BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS

In the Matter of the Application of Black Hills/Kansas Gas Utility Company, LLC, d/b/a Black Hills Energy, for Approval of the Commission to Make Certain Changes in its Rates for Natural Gas Service

Docket No.
14-BHCG-502 -RTS

DIRECT TESTIMONY OF
THOMAS J. SULLIVAN
FOR BLACK HILLS/KANSAS GAS UTILITY COMPANY, LLC

I. NAME, BACKGROUND AND QUALIFICATION OF WITNESS

Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
A. Thomas J. Sullivan, Navillus Utility Consulting LLC, 15898 Millville Road, Richmond, Missouri 64085.
Q. WHAT IS YOUR EDUCATIONAL BACKGROUND?
A. I earned a Bachelor of Science Degree in Civil Engineering from the University of Missouri - Rolla in 1980, summa cum laude, and a Master of Business

Administration degree from the University of Missouri - Kansas City in 1985.
Q. ARE YOU A REGISTERED PROFESSIONAL ENGINEER?
A. Yes, I am a registered Professional Engineer in the State of Missouri.
Q. TO WHAT PROFESSIONAL ORGANIZATIONS DO YOU BELONG?
A. I am a member of the American Society of Civil Engineers and I am an associate member of the American Public Gas Association.

Q. WHAT IS YOUR PROFESSIONAL EXPERIENCE?

A. I have been a utility management consultant for over 30 years. Over this period, I have been responsible for the preparation and presentation of numerous studies for gas, electric, water, and wastewater utilities. Clients I have served include investor owned utilities, publicly owned utilities, and their customers. For these clients, I have prepared studies involving valuation and depreciation, cost of service, cost allocation, rate design, cost of capital, supply analysis, load forecasting, economic and financial feasibility, cost recovery mechanisms, and other engineering and economic matters.

Prior to starting my own consulting practice in June 2011, I worked for Black \& Veatch Corporation for over 31 years. For most of that time I worked in Black \& Veatch's management consulting divisions. I also worked for two years as a staff engineer in Black \& Veatch's energy and water divisions.

Q. HAVE YOU PREVIOUSLY APPEARED AS AN EXPERT WITNESS?

A. Yes, I have. In Exhibit__(TJS-1), I list cases where I have filed testimony as an expert witness.
Q. FOR WHOM ARE YOU TESTIFYING IN THIS PROCEEDING?
A. I am testifying on behalf of Black Hills Kansas Gas Utility, LLC ("Black Hills Kansas" or "Company").

II. PURPOSE OF TESTIMONY

Q. WHAT IS THE NATURE OF YOUR WORK IN THIS ENGAGEMENT?

A. The Company asked me to:

1. Prepare a heating adjustment to reflect normal weather conditions.
2. Prepare an irrigation adjustment to reflect normal usage.
3. Annualize billing determinants and revenues associated with the customers served from the recently acquired Anadarko system.
4. Determine test year revenues under existing rates.
5. Prepare a class cost of service study.
6. Design rates proposed by the Company which will produce revenues equal to the Company's proposed test year revenue requirement.
7. Develop a rider to share revenues associated with at-risk customers served from the Anadarko system.

After this initial introductory section, my direct testimony is divided into sections that parallel these issues.

Q. DO YOU SPONSOR ANY EXHIBITS?

A. Yes, in addition to Exhibit__(TJS-1) previously discussed, I sponsor the following exhibits:
o Exhibit \qquad (TJS-2) - Heating Degree-Days Summary
o Exhibit (TJS-3) - Heating Adjustment Regression Analysis Summary
o Exhibit (TJS-4) - Heating Adjustment
o Exhibit (TJS-5) - Irrigation Adjustment Weather Data
o Exhibit__ (TJS-6) - Irrigation Adjustment Regression Analysis Summary
o Exhibit \qquad (TJS-7) - Irrigation Adjustment
o Exhibit__ (TJS-8) - Historical Irrigation Use per Customer
o Exhibit ___ (TJS-9) - Anadarko Test Year Adjustment and Anadarko Revenue Sharing Rider
o Exhibit ___ (TJS-10) - Test Year Revenues Under Existing Rates
o Exhibit ___ (TJS-11) - Functional Cost Classification
o Exhibit ___ (TJS-12) - Class Cost of Service Allocation
o Exhibit ___ (TJS-13) - Rate Design
I also sponsor Section 17 of the Company's filing. Section 17 summarizes revenues under current and Company proposed rates and the following tariff sheets (found in Section 18 of the Company's filing):
o Residential Service - Index Number 15
o Small Commercial Service - Index Number 18
o Small Volume Firm Service - Index Number 20
o Large Volume Firm Service - Index Number 21
o Small Volume Interruptible Service - Index Number 22
o Large Volume Interruptible Service - Index Number 23
o Small Commercial Transportation Service - Aggregated - Index Number 31
o Small Volume Transportation Service - Aggregated - Index Number 32
o Large Volume Transportation Service- Aggregated - Index Number 33
o Large Volume Transportation Service - Index Number 34
o Optional Large Volume Transportation Service - Aggregated - Index Number 36
o Bypass Revenue Rider - Index Number 17C

III. HEATING ADJUSTMENT

Q. IN YOUR OPINION, WERE ACTUAL HEATING SEASON WEATHER CONDITIONS IN THE COMPANY'S KANSAS SERVICE TERRITORY FOR THE 12-MONTH PERIOD ENDED DECEMBER 31, 2013, NORMAL?
A. No, they were not. Based on a comparison of actual heating degree-days (HDDs) to normal HDDs for the thirty-year period 1981-2010 (as reported by NOAA), conditions were colder than normal. As shown on Line 27 in Exhibit ___(TJS-2), weather conditions ranged from 2.7 percent colder than normal in Topeka to 11.7 percent colder than normal in Liberal during calendar year 2013. Taking into consideration that the methodology I use also includes the impact of the prior month's HDDs, a better measure of the conditions that impact the test year is the 13-month period that also includes December 2012. As shown on line 28 of Exhibit___(TJS-2), weather conditions ranged from 0.4 percent warmer than normal in Topeka to 9.5 percent colder than normal in Liberal. These deviations are significant enough that I concluded a heating adjustment to reflect normal weather conditions is warranted.
Q. PLEASE OUTLINE YOUR PREPARED DIRECT TESTIMONY CONCERNING WEATHER NORMALIZATION.
A. I will describe:

1. The methodology used to determine the relationship between volumes (usage) and weather;
2. The weather stations and weather data used in the analysis;
3. The analysis used to adjust heat sensitive volumes to reflect normal weather conditions; and
4. The results of the heating adjustment analysis.

Q. PLEASE SUMMARIZE THE METHODOLOGY YOU USE TO DETERMINE THE RELATIONSHIP BETWEEN SALES AND WEATHER.

A. I use multiple linear regression analysis to define the relationship between volumes and variables that represent weather conditions. Multiple linear regression is a statistical approach commonly used to predict the value of a dependent variable (use per customer) using multiple independent variables (including current month heating degree days (HDD) and previous month HDDs). In this regard, the goal of multiple regression is to explain (predict) the dependent variable with reasonable accuracy using as few independent variables as possible.

Multiple regression yields an equation of the form:
$Y=B+A_{1} X_{1}+A_{2} X_{2}+\ldots+A_{K} X_{K}$
where
$Y \quad$ is the dependent variable
$X_{1} \ldots X_{K} \quad$ are the independent variables
B is the intercept (or constant)
$A_{1} \ldots A_{K} \quad$ are the regression coefficients
With respect to my use of multiple regression as a tool in developing adjustments to reflect normal weather conditions, the dependent variable (Y) is monthly use
per customer. I calculate monthly use per customer by dividing monthly billed volumes by monthly number of customers. I use monthly use per customer as the dependent variable instead of total monthly volumes because use per customer reduces the effect of growth or decline in total volumes due to changes in numbers of customers (particularly on a seasonal basis). Independent variables $\left(X_{1} \ldots X_{K}\right)$ are typically weather variables such as HDDs. The intercept (B) is a monthly constant. The constant represents use that is not affected by the independent variables. This non-weather sensitive use is generally referred to as base use (and includes usage such as water heating, cooking, and clothes drying, which are not weather dependent). The coefficients $\left(A_{1} \ldots A_{K}\right)$ are developed from the regression analysis to produce the best fit which in this case is the sum of the difference between actual and predicted use per customer squared (least squares).

I calculate several statistics in connection with my regression analyses to assist in the evaluation of the significance (degree to which the independent variables explain the dependent variable) of the various variables in explaining use per customer. In this regard, I primarily focus on the coefficient of determination (Rsquared) and the F statistic, which are commonly used to measure how well the independent variables (HDDs, for example) explain the dependent variable (usage).
Q. WHAT DATA DO YOU USE IN PERFORMING THE MULTIPLE LINEAR REGRESSION ANALYSIS DESCRIBED ABOVE?
A. My analysis is based on regressing actual use per customer versus actual monthly HDDs. This regression analysis provides coefficients that I use to determine use per customer per HDD.

Q. WHAT RATE SCHEDULES ARE YOU PROPOSING TO ADJUST?

A. The rate schedules I adjust are the Company's Residential service (RS), Small Commercial service (SC), Small Volume Firm (SVF), and Large Volume Firm (LVF) sales rate schedules. These are the same rate schedules to which the Company currently applies its Weather Normalization Adjustment Rider. Historically, I have adjusted volumes under those rate schedules that exhibit use sensitive to changes in winter temperature conditions. Customers who take service under these rate schedules primarily use natural gas for space heating. The variation in monthly HDDs typically explains most of the variation in volumes used by customers who use gas in space heating applications. I did not run regression analyses on volumes for interruptible or transportation customers. Historically, these customer classes have not been weather normalized.
Q. WHAT VARIABLES DO YOU DETERMINE BEST EXPLAIN THE VARIATION IN HEAT SENSITIVE VOLUMES AND WHAT IS THE BASIS FOR YOUR RECOMMENDATION REGARDING THESE VARIABLES?
A. The correlation between HDDs and sales to space heating customers is quite high. In other words, the colder the weather, the greater are the space heating requirements. HDDs are typically used as a basis to predict a customer's natural gas space heating requirement. The results of my analyses in this case confirm this fact.

A heating degree-day is defined as 65 degrees less average daily temperature where average daily temperature equals the average of the high and low temperatures. Sixty-five degrees is typically used as the base temperature. If the average daily temperature exceeds 65 degrees, the HDD for that day is set equal to zero. The sum of the monthly HDDs for a particular month is the sum of the daily HDDs for that calendar month.

In my regression analyses, I include current and previous month's HDDs as independent variables. Because volumes are based on the reading of a customer's meter, which for space heating customers, usually lags the customer's actual usage, and the reading of meters for most customers is done on a cycle that does not correspond to a calendar month, I include HDDs for the previous month as a variable.

Q. PLEASE DESCRIBE THE WEATHER DATA YOU UTILIZE FOR YOUR ANALYSIS.

A. I use data reported for the weather stations from Topeka, Garden City, Dodge City, Liberal, Hutchinson, Wichita, and Goodland. As part of the Stipulation and Agreement in Docket No. 05-AQLG-367-RTS, the parties agreed to use Topeka for the Lawrence area service territory. In the Company' last case in Docket No. 07-AQLG-431-RTS, the parties also used Topeka for this area.

Q. WHAT IS THE SOURCE OF THE DATA YOU USE FOR ACTUAL AND NORMAL HDDS?

A. I use the actual monthly normal HDDs for each weather station as published by NOAA. The normal HDDs are the NOAA 30-year normal HDDs for the 19812010 time period.

Q. WHAT SALES AND CUSTOMER DATA DO YOU USE?

A. At my request, the Company provided monthly sales and number of customers for the period 2006 through December 2013 for each rate schedule that existed during those years. This data combined with the data used in the Company's prior case for the period 1986 through 2006 form the database that I use. I combine the Small Commercial, Small Volume Firm, and Large Volume Firm customers into one non-residential group for the purposes of regression analysis. I then separate these customers into their respective customer classes for the purposes of calculating the heating adjustment to recognize the differences in the rates for these classes.
Q. DOES THE COMPANY'S WNA RIDER USE SEPARATE COEFFICIENTS FOR THESE NON-RESIDENTIAL CUSTOMER CLASSES?
A. Yes. In the Company's last case (Docket No. 07-AQLG-432-RTS), the Staff developed separate analyses for the Small Commercial, Small Volume Firm, and Large Volume Firm classes and the Staff's analysis was agreed to in the settlement of that case and forms the basis for the current coefficients used.

Q. DO YOU BELIEVE THAT PERFORMING SEPARATE REGRESSION

 ANALYSES FOR THE SMALL COMMERCIAL, SMALL VOLUME FIRM, AND LARGE VOLUME FIRM CLASSES ARE APPROPRIATE FOR THIS CASE?A. No. Customers are routinely reassigned between the Small Commercial, Small Volume Firm, and Large Volume Firm classes. This makes it particularly problematic for running any meaningful analyses separately for the Small Commercial, Small Volume Firm, and Large Volume Firm classes in this case.

Close examination of the number of Small Volume Firm customers shows very large variations in the number of customers served over time. For example, the total number of Small Volume Firm customers declined from 1,162 customers in December 2012 to 901 in February 2013 to 884 in December 2013. Based on my discussion with the Company, they regularly review customer usage data to determine whether customers should be moved from one rate schedule to another based on the usage definitions for Small Commercial, Small Volume, and Large Volume customers. The customer changes shown above are the result of the Company transferring Small Volume customers to a more appropriate Small Commercial rate schedule. Examination of the historical data shows that this is not an isolated case and the transfers can go in both directions. However, the magnitude of the transfer (about 25 percent of the customers) in 2013 was larger than normal. Similar changes also occur relative to the Large Volume class. The total number of Large Volume customers declined from 33 in December 2012 to 23 in December 2013 (30 percent of the customers). These large customer transfers also resulted in large changes in use per customers that are clearly not weather related. For example, the November and December HDDs for Goodland have been relatively constant over the last four years, yet the
use per Small Volume customer increased substantially in 2013. This would be expected if "smaller" customers are transferred to Small Commercial service.

Since customers are routinely transferred among the Small Commercial, Small Volume, and Large Volume classes and the transfers can be a very large percentage of the number of customers served in the Small Volume and Large Volume classes and these transfers also significantly impact the use per customer (independent of the weather), it is reasonable to combine these classes for purposes of determining the coefficients for these classes in order to eliminate the impact of these transfers on the regression analyses.

Q. OVER WHAT PERIOD DO YOU ANALYZE USE AND HDDS?

A. I used a 10-year period, 2004 through 2013. My goal is to use a sufficiently long period of time such that the average heating degree-days over that period are approximately equal to normal.

Q. WHY DID YOU PERFORM YOUR ANALYSES OVER SUCH AN EXTENDED PERIOD OF TIME?

A. By so doing, I am able to isolate conditions which more closely approximate normal conditions. In connection with the numerous studies I have conducted, I have observed some anomalies. One of these anomalies is that for a specific customer group, the relationship between sales and HDDs can appear to change substantially from year to year. In studying this question, I found that significant changes in the relationship generally correspond to years where weather conditions are more abnormal. Therefore, it is important that I examine
conditions over a long enough period to ensure that any weather adjustment I make encompasses periods with truly normal usage characteristics. For example, using only the test year of data for my analysis, violates this principle because weather during the test year (in this case) was colder than normal. It is unreasonable to assume that usage characteristics during one year which was colder than normal would be representative of normal usage characteristics.

Q. WERE THERE ANY OTHER CONSIDERATIONS THAT INFLUENCE THE

 TIME PERIOD YOU ANALYZED?A. Yes. The Company has experienced a decline in use per customer (especially in the Residential class) over the 1986-2013 period. In order to reflect this declining customer use in the coefficients that are the basis for my weather normalization adjustment, I had to temper my desire to use a longer period of time (as discussed in the prior answer) with the need to use a shorter time period that reflects the change in customers' usage as a result of declining use (primarily due to improvements in the efficiency of equipment).

Q. PLEASE DESCRIBE YOUR WEATHER NORMALIZATION REGRESSION

 RESULTS.A. In order to identify anomalies in usage patterns over the 10-year period I analyzed, I perform regression analyses in decreasing blocks of time (20042013, 2005-2013, 2006-2013, etc.) for each residential and non-residential customer group. Exhibit___(TJS-3) summarizes the results of each of the regression analyses. Consistent with the methodology I have used in prior rate

Kansas cases, I evaluate the results of each of these time periods using five criteria. These five criteria are:

1. Consistency of predicted normal use per customer;
2. Average annual HDDs for the period evaluated being near normal;
3. \quad R Squared - values in the high 90 percent range are common for the residential and non-residential customer groups;
4. \quad F statistic - higher values equate to higher level of significance;
5. Obvious changes in the database as reflected in coefficients and statistics.

In Exhibit___(TJS-3) I used the five-year period 2009-2013 period to compute my weather normalization adjustment.

Q. WHY DID YOU USE THE FIVE-YEAR TIME PERIOD?

A. As discussed earlier, I wanted to balance using a long enough time period to capture normal conditions with using a shorter time period to capture current usage characteristics. A significant factor that impacted my decision was the weather conditions during 2012. As shown on Line 29 of Exhibit \qquad (TJS-2), weather conditions during 2012 were substantially warmer than normal. For each year added to the analysis beyond 2012, the average HDDs get closer to normal through 2008 (see Lines 19 through 25 of Exhibit___(TJS-2). Beyond

2009 (2009-2013, 2008-2013, 2007-2013, and 2006-2013), the average annual HDDs level out.

Generally, the statistics for each analysis are fairly consistent with the statistics for a five-year analysis being better than shorter time periods. The five-year time period is the shortest time period that is reasonably close to normal. A six-year period (2008-2013) is closest to normal, but I believe that the five-year time period represents the best balance between meeting the statistical criteria I established, using a period of approximately normal conditions, and using the shortest time period reasonable to reflect changes in usage characteristics over time.

Q. HOW DID YOU DETERMINE THE HEATING VOLUME ADJUSTMENT?

A. I summarize this calculation in Exhibit__(TJS-4). The heating adjustment per customer is the difference between normal and actual HDDs multiplied by its respective coefficient (current and prior months) for each month of the test year. As previously indicated, normal HDDs are the published NOAA normals for the 1981-2010 period. Using coefficients from Exhibit___(TJS-3) and weather data shown in Exhibit___(TJS-4), I determine the heating adjustment per customer. After I calculate the monthly heating adjustment per customer (therm/customer), I multiply each of these figures by the respective number of customers for each month of the test year to determine the total volumetric adjustment. As I show in Column J of Exhibit___(TJS-4), Page 5 of 5, my heating adjustment represents an decrease in sales of 1,290,154 therms for the Residential class, 516,570
therms for the Small Commercial class, 42,628 therms for the Small Volume class, and 574 therms for the Large Volume class for a total recommended heating adjustment of $1,849,926$ therms. These adjustments result in a decrease in volumes which is consistent with actual conditions being colder than normal during the test year.

Q. HOW DID YOU DETERMINE THE REVENUE AND COST OF GAS

ADJUSTMENTS FOR EACH OF THE CUSTOMER CLASSES YOU ADJUST?

A. The margin revenue adjustment is equal to the margin rate times the sales adjustment. I show the margin adjustment in Column L of Exhibit \qquad (TJS-4) and I calculate it by multiplying Column J by Column K . I show the cost of gas adjustment in Column N and I calculate it by multiplying Column J by Column M . As with the adjustment to margin revenues, the adjustment to cost of gas (revenues and cost) is equal to the cost of gas rate (\$/therm) times the heating sales adjustment (therm). The cost of gas I use is the total gas purchases made by the Company divided by the total sales volumes (excluding transportation) for the test year for each customer class. The total revenue adjustment, shown in Column O , is the sum of Columns L and N . I summarize these adjustments in the table below.

	Margin (\$)	Cost of Gas (\$)	Total (\$)
	Residential	$(187,382)$	$(642,786)$
Small Commercial	$(75,027)$	$(256,281)$	$(331,307)$
Small Volume	$(5,328)$	$(21,344)$	$(26,673)$
Large Volume	(34)	(289)	(323)
Total	$(267,771)$	$(920,700)$	$(1,188,470)$

Q. ARE THE RESULTS OF YOUR ANALYSES CONSISTENT WITH THE GENERAL WEATHER CONDITIONS EXPERIENCED IN THE COMPANY'S KANSAS SERVICE TERRITORY?
A. Yes, they are. A negative adjustment is intuitively correct because HDDs for the test year were greater than normal, i.e. the test year winter period was colder than normal. This implies that actual sales are more than sales that would be expected if actual temperatures had been normal. Further, for each weather station the volumetric adjustment was slightly less than the deviation in HDDs for those stations. Again this result is consistent with expectations because only the heat sensitive portion of annual usage is being adjusted (not base usage).
Q. WILL ANY OF YOUR INFORMATION FROM THE CURRENT RATE CASE BE USED FOR THE COMPANY'S WNA CALCULATION?
A. Yes, I understand the Company will update their heat sensitive factors.
Q. DOES THIS CONCLUDE YOUR PREPARED DIRECT TESTIMONY REGARDING YOUR PROPOSED WEATHER NORMALIZATION ADJUSTMENT?
A. Yes, it does.

IV. IRRIGATION ADJUSTMENT

Q. WHAT IRRIGATION SERVICE CLASSIFICATIONS OR RATE SCHEDULES DO YOU PROPOSE TO ADJUST?
A. The Company provides service to irrigation customers under the Irrigation Sales Service (Schedule IR) and Irrigation Transportation Service (Schedule ITS) Rate

Schedules. Consistent with the Staff's approach in the Company' prior case, I am only adjusting volumes during the April through September period which generally coincides with the expected irrigation (growing) season.
Q. PLEASE OUTLINE YOUR PREPARED DIRECT TESTIMONY CONCERNING YOUR PROPOSED IRRIGATION ADJUSTMENT.
A. I will describe:

1. The methodology used to determine the relationship between volumes (usage) and weather;
2. The weather stations and weather data used in the analysis;
3. The analysis used to adjust irrigation volumes to reflect normal weather conditions; and
4. The results of the irrigation adjustment analysis.

Q. PLEASE SUMMARIZE THE METHODOLOGY YOU USE TO DETERMINE THE

 RELATIONSHIP BETWEEN SALES AND WEATHER.A. I use multiple linear regression analysis to define the relationship between volumes and variables that represent weather conditions. The methodology is similar to the methodology I describe above for the heating adjustment except that rather than using current and previous month's HDDs as the independent variables I use current and previous month's rainfall and current and previous month's average temperature. The current and prior month's data are used to reflect cycle billing. Also, the underlying hypothesis is that irrigation usage increases as rainfall decreases and temperature increases. These are the
independent variables that both the Staff and I have used in prior cases for the irrigation adjustment regression analysis.

In addition, I also provide an analysis based on the five-year average of irrigation volumes as a reasonableness check on the analysis. This analysis is a broader consideration than the regression analysis approach which focuses only the weather influences on irrigation usage.

Q. PLEASE DESCRIBE THE WEATHER DATA YOU USE.

A. Because the irrigation customers are located across a large geographic area, I considered inches of rainfall and average monthly temperature data as reported by the National Oceanic and Atmospheric Administration (NOAA) from weather stations located in reasonable proximity to the majority of the rate code's customers. I use the same weather stations that were used for the heating adjustment. However, the Company has no irrigation customers in the Topeka area. The normal rainfall and normal average monthly temperature are based on the NOAA normals for the 30-year period 1981 through 2010.

Q. IN YOUR OPINION, WERE ACTUAL WEATHER CONDITIONS

 (TEMPERATURE AND RAINFALL) IN THE COMPANY'S SERVICE TERRITORY FOR THE 12-MONTH PERIOD ENDED DECEMBER 31, 2013, NORMAL?A. No, they were not. As shown in Exhibit__(TJS-5), actual temperatures were slightly hotter than normal and actual rainfall was slightly lower than normal. The deviations are significant enough (particularly for the stations that I am proposing
to adjust as discussed below) that I concluded a heating adjustment to reflect normal weather conditions is warranted.

Q. WHAT VOLUME AND CUSTOMER DATA DO YOU USE?

A. At my request, the Company provided me monthly volumes and number of customers for the period June 2006 through December 2013 for each irrigation rate schedule that existed during those years. As shown in Exhibit \qquad (TJS-5), this period includes both periods of higher and lower than normal average temperature and higher and lower than normal rainfall.
Q. WHAT VARIABLES DO YOU FIND BEST AT EXPLAINING THE VARIATION IN IRRIGATION SALES?
A. Based on my analysis, I find that changes in current and previous month's average temperature and previous month's inches of precipitation produce the strongest correlation with changes in use by irrigation customers in the Goodland, Dodge City, and Garden City areas. These areas account for approximately 95 percent of the irrigation customers the Company serves.

Q. WERE YOU ABLE TO OBTAIN REASONABLE RESULTS FOR THE OTHER

 THREE AREAS YOU ANALYZED?A. No. In the Liberal area the number of customers increased from 4 to 6 and the average usage declined significantly in 2013. Further, NOAA temperature data was missing for July and August 2013. These factors contributed to regression results that were inconsistent and not significant. In the Hutchinson area, the usage characteristics changed significantly between 2009 and 2010 (use per customer declined significantly). Limiting the analysis for Hutchinson to the 2010
through 2013 period produced results that are inconsistent with the underlying hypothesis of the model. The results produced a positive correlation with rainfall which means that the model determined that usage increases as rainfall increases, a result that does not make intuitive sense. In the Wichita area, there was an increase in customers from 31 to 38 and a significant reduction in use per customer. Due to the data and analysis issues combined with the fact that these three areas contain only about 5 percent of irrigation customers, I am not proposing an adjustment for these three areas.
Q. PLEASE SUMMARIZE EACH OF THE REGRESSION EQUATIONS YOU DEVELOP.
A. Exhibit \qquad (TJS-6) is a summary of statistical results of my study for the Goodland, Dodge City, and Garden City weather stations based on data for the June 2006 through 2013 period.

Q. HOW DO YOU DETERMINE THE IRRIGATION VOLUME ADJUSTMENT?

A. The irrigation adjustment per customer is calculated as the difference between normal and actual weather conditions multiplied by its respective coefficient. Monthly normals are the published NOAA normals for the 30-year period 1981 through 2010 for each weather station.

Exhibit___(TJS-7) shows actual and normal monthly precipitation and temperature data for each weather station. Using coefficients from Exhibit \qquad (TJS-6), weather data and the number of customers shown in Exhibit \qquad (TJS-
7), the irrigation volume adjustment (Column N) is the product of the use per customer adjustment (Column L) and the number of customers (Column M).

As shown in Column N of Exhibit \qquad (TJS-7), my recommended irrigation adjustment is to reduce sales volumes by 1,673,601 therms and transportation volumes by 648,798 therms for a total reduction of 2,322,399 therms.

Q. HOW DO YOU DETERMINE THE IRRIGATION REVENUE AND COST OF GAS ADJUSTMENT?

A. The margin revenue adjustment is equal to the marginal rate (excluding gas cost) times the volume adjustment. The margin revenue adjustments are shown in Columns O and P of Exhibit ___ (TJS-7) and are calculated by multiplying Column O by Columns N. As shown in Exhibit \qquad (TJS-7), the margin adjustment amounts to a reduction in test year margin of $\$ 85,354$ for sales service and $\$ 33,089$ for transportation service customers, and the total margin adjustment equals $\$ 118,442$.

The adjustment to cost of gas is also shown in Exhibit \qquad (TJS-7). This adjustment is shown in Columns Q and R and is the product of Columns N and Q. As with the adjustment to margin revenues, the adjustment to cost of gas (revenues and cost) is equal to the cost of gas rate (\$/therm) times the irrigation sales adjustment (therms). As shown in Exhibit \qquad (TJS-7), this adjustment results in a reduction in cost of gas (and in revenues) of $\$ 672,579$. Note that there is no cost of gas adjustment associated with transportation customers.

The total revenue adjustment is equal to the sum of the margin and cost of gas adjustments (for sales service) and is shown in Column S of Exhibit \qquad (TJS-7). The total sales and transportation revenue adjustment equals a reduction of \$791,022.

Q. ARE THE RESULTS OF YOUR ANALYSIS CONSISTENT WITH THE GENERAL WEATHER CONDITIONS EXPERIENCED IN THE COMPANY'S SERVICE TERRITORY?

A. Yes, they are. The negative adjustment is intuitively correct because for the 2013 test period rainfall in Goodland, Dodge City, and Garden City was less than normal and average temperatures were also slightly warmer than normal. This implies that actual irrigation requirements were greater than expected if precipitation and temperatures were normal.

Q. DID YOU PERFORM ANY OTHER ANALYSES TO TEST THE

 REASONABLENESS OF YOUR PROPOSED IRRIGATION ADJUSTMENT?A. Yes, I did. In order to get a longer term perspective of the average irrigation use per customer and test the results of my proposed irrigation adjustment, I prepared Exhibit \qquad (TJS-8). This exhibit shows the actual use per irrigation customer for each year 1989 through 2013. During 2013, the average use per customer was 23,990 therms per customer. My proposed adjusted irrigation use per customer is 22,648 therms per customer. This is slightly less than the fiveyear average use per customer of 22,999 therms per customer but more than the eight year average (the 2006-2013 regression analysis period) of 21,435 therms
per customer. This analysis also shows that the total number of irrigation customers remained fairly stable over the 2006 to 2013 period (after declining in 2004 and 2005).
Q. DOES THIS CONCLUDE YOUR PREPARED DIRECT TESTIMONY REGARDING YOUR PROPOSED IRRIGATION ADJUSTMENT?
A. Yes, it does.

V. ANADARKO ANNUALIZATION ADJUSTMENT

Q. PLEASE DESCRIBE THE ANADARKO ANNUALIZATION ADJUSTMENT THE COMPANY IS PROPOSING.
A. Since the acquisition of the Anadarko system did not occur until late in 2013, the volume and revenues associated with these customers are not in the Company's per books figures. Therefore, the Company is proposing to include the sales associated with the three customers who are not presently considered as bypass threats in test year revenues. One of these customers is a full margin large transportation customer and the other two are large volume firm customers. The 2013 volumes and revenues under the Company's existing rates will be included in the cost of service study for these customers. There are three other customers who are considered bypass threats and the Company is not highly confident that these customers can be retained. Therefore, the Company is proposing a Bypass Revenue Rider ("BRR") to share 100 percent of any net revenues received from these customers with the Company's full tariff customers (excluding irrigation and any negotiated margin customers).
Q. HAVE YOU PREPARED AN EXHIBIT SHOWING THE TEST YEAR VOLUMES AND REVENUES ASSOCIATED WITH THE ANADARKO CUSTOMERS WHO ARE NOT CONSIDERED BYPASS THREATS?
A. Yes. Exhibit___(TJS-9), Lines 1 through 4 show the volumes and test year revenues associated with these customers. The total volumes are 1,734,770 therms associated with the three customers. Margin revenues equal \$111, 567, gas cost equals $\$ 675,065$, and total revenues equal $\$ 786,632$.

Q. PLEASE DESCRIBE THE BRR RIDER THAT THE COMPANY IS

 PROPOSING.A. The proposed rider is included in Index No. 17C of the Company proposed tariff. The proposed rider would share 100 percent of the net revenues (excluding gas cost) recovered from the three existing Anadarko system customers who are considered bypass threats. On an annual basis, the Company would determine the amount of net revenues, if any, generated by these three customers. These revenues would be shared among the full margin customers (excluding irrigation and negotiated margin customers) based on the same percentage as the revenue credits (negotiated large volume and irrigation customers) are shared in the most recent rate case. As discussed later in my cost of service testimony, the net revenues associated with irrigation and negotiated margin customers are credited to the cost of service for the full margin customers based on the mains allocation basis. Based on the Company's filed case, the allocation of these revenue credits to each class are as follows:

Residential - 68.17 percent

Small Commercial - 10.59 percent
Small Volume - 9.37 percent
Large Volume - 11.87 percent
The net shared revenue associated with this rider allocated to each class would then be divided by the number of bills rendered to each class during the most recent twelve month period. This would result in a $\$ / b i l l$ amount that would be credited to each customer in those classes over the next twelve months. The credit would be recalculated in the same fashion each year until the Company's next Kansas rate case is concluded. After each rate case, the allocation to each class would be updated to reflect the most recent rate case and to reflect the Anadarko customers determined to be bypass threats in that case.

Q. HAVE YOU PREPARED AN EXAMPLE OF HOW THE BRR WILL BE

 DETERMINED?A. Yes, it is included in Lines 5 through 33 of Exhibit \qquad (TJS-9). Lines 7 through 10 show the 2013 actual volumes for the existing Anadarko customers who are considered to be bypass threats and the rates the Company expects to be able to charge these customers. The total estimated net revenues (all the customers are currently transportation customers) associated with these customers would be $\$ 714,555$ if these sales levels and rates were realized. The class allocation discussed above is shown on Lines 12 through 21. The 2013 test year number of bills for each customer is shown on Lines 23 through 26, and the resulting ARS revenue credits are shown on Lines 28 through 31.
Q. DOES THIS CONCLUDE YOUR DIRECT TESTIMONY REGARDING THE ANADARKO SYSTEM REVENUE ADJUSTMENT AND BRR?
A. Yes, it does.

VI. TEST YEAR REVENUES UNDER EXISTING RATES

Q. WHERE DO YOU SHOW THE DEVELOPMENT OF TEST YEAR REVENUES UNDER EXISTING RATES.
A. I show the development of revenues under existing rates in Exhibit \qquad (TJS-10) which consists of 12 pages.
Q. PLEASE EXPLAIN EXHIBIT \qquad (TJS-10).
A. On Pages 1 through 4 Columns D through F, I summarize number of bills, number of customers (number of bills divided by 12), and volumes (therms) based on the information contained in the Company's billing records for the test year ended December 31, 2013 for each customer class and rate schedule. I show the winter period volumes (November through March) in Column G which are used later in my class cost of service study. Columns H and I summarize the Company's existing rates. Colum J shows total margin revenues which are equal to the number of bills times the customer charges plus the volumes time the commodity (or margin) rate. Column K shows the actual test year average cost of gas for each sales rate schedule. Gas cost revenues (Column L) are equal to the product of the volumes and average cost of gas. Total Revenues (Column M) equal the sum of the Margin Revenues (Column J) and the Gas Cost Revenues (Column L). Columns N and O summarize the actual Gas System

Reliability Surcharge ("GSRS") revenues collected during the test year and the Ad Valorem Tax Surcharge ("AVTS") revenues, respectively. Total Revenues in Column P equal the sum of Columns M, N and O . These revenues equal Restated Test Period Revenues.

On Pages 5 through 8 of Exhibit \qquad (TJS-10), I summarize each of the three pro forma adjustments I sponsor that are discussed in the prior sections of my direct testimony: Heating Adjustment, Irrigation Adjustment, and Anadarko Adjustment. The Heating Adjustment figures (Columns Q through U) are taken from Exhibit ___(TJS-4), the Irrigation Adjustment figures (Columns V through Y) are taken from Exhibit \qquad (TJS-7), and the Anadarko Adjustment figures (Columns Z through AF) are taken from Exhibit \qquad (TJS-9).

On Pages 9 through 12 of Exhibit \qquad (TJS-10) I summarize the adjusted test year number of bills (Column AG), number of customers (Column AH), Volumes (Column AI), Winter Period Volumes (Column AJ), Margin Revenues (Column AK), Gas Cost Revenues (Column AL), and Total Revenues (Column AM). The Total Revenues exclude the AVTS revenues and are equal to the revenues shown in the Company's Adjusted Income Statement.

Q. WHY IS THE COMPANY PROPOSING TO ELIMINATE AVTS REVENUES?

A. The costs associated with the AVTS revenues are included in the test year property tax costs and are included as part of the test year revenues requirement. As such, the Company is proposing that these costs will now be
collected through base rates and the AVTS will be reset such that the base level of Ad Valorem taxes in the AVTS will be reset to the level in the test year.
Q. WHY DO TEST YEAR REVENUES NOT INCLUDE WNA REVENUES?
A. Since the level of sales and revenues in the test year are being weather normalized, there are by definition no WNA revenues in test year revenues. The WNA revenues are calculated and tracked separately from base rate revenues (similar to cost of gas). Therefore, the WNA revenues are not included in the test year figures I use.
Q. WHY IS THE COMPANY PROPOSING TO INCLUDE THE GSRS REVENUES?
A. I am including the GSRS revenues in test year revenues at the actual level of GSRS revenues collected during the test year. The GSRS revenues have been previously reviewed and approved by the Commission, so the Company's application does not attempt to remove or adjust these revenues. My proposed rate design converts these revenues from surcharge revenue to base rates. The AVTS surcharge revenues are handled differently. The company proposes to build the most recent ad valorem taxes into base rates, so future AVTS surcharge filings reflect the difference between future ad valorem tax levels and the amount included in base rates in this case.
Q. WHAT ARE THE APPLICABLE EXISTING RATES YOU USE IN EXHIBIT \qquad (TJS-10)?
A. The applicable existing rates are the rates that the Company actually charged during the test year.
Q. PLEASE RECONCILE THE RESTATED TEST PERIOD REVENUES SHOWN IN SECTION 3, SCHEDULE 2, PAGE 2 OF 24 WITH EXHIBIT \qquad (TJS-10).
A. The Gas Sales Revenues on Line 1 of Section 3, Schedule 2, Page 2 of 24 equal $\$ 105,678,718$. This figure equals the Total Sales Revenue shown on Page 1, Column P, Line 33 of Exhibit ___(TJS-10). The Other Revenues shown on Line 2 of Section 3, Schedule 2, Page 2 of 24 equal $\$ 7,969,215$. This figures equals the Transportation Revenues shown on Page 4, Column P, Line 154 of Exhibit \ldots __(TJS-10) of $\$ 6,287,286$ plus the following other revenues:

1. Account 487 - Forfeited Discounts - $\$ 444,424$
2. Account 488 - Misc. Service Revenues - $\$ 772,974$
3. Account 495 - Other Gas Revenues - $\$ 441,103$ plus $\$ 23,428$ (Balancing Penalties)

Q. PLEASE RECONCILE THE ADJUSTED INCOME STATEMENT REVENUES

 SHOWN IN SECTION 3, SCHEDULE 2, PAGE 3 OF 24 WITH EXHIBIT \qquad (TJS-10).A. The Gas Sales Revenues on Line 1 of Section 3, Schedule 2, Page 3 of 24 equal $\$ 102,920,942$. This figure equals the Total Sales Revenue shown on Page 9, Column AM, Line 33 of Exhibit \qquad (TJS-10). The Other Revenues shown on Line 2 of Section 3, Schedule 2, Page 3 of 24 equal $\$ 7,474,216$. This figures equals the Transportation Revenues shown on Page 12, Column AM, Line 154 of Exhibit ___(TJS-10) of \$5,611,244 plus the following other revenues:

1. Account 487 - Forfeited Discounts - $\$ 444,424$

6 A. Yes, it does.

VII. CLASS COST OF SERVICE

Q. PLEASE DESCRIBE THE CLASS COST OF SERVICE STUDY YOU SPONSOR IN THIS MATTER.
A. The class cost of service study is based upon Black Hills Kansas gas operations for the twelve-month period ended December 31, 2013 as adjusted for known and measurable changes. Test period figures applicable to Kansas operations were provided by Company personnel.

The class cost of service study I sponsor is contained in Exhibits \qquad (TJS-11) and (TJS-12). The form and structure of these exhibits are the same as the class cost of service studies filed in Docket No. 00-UTCG-336-RTS, Docket No. 05-AQLG-367-RTS, and Docket No. 07-AQLG-431-RTS.

Q. PLEASE DESCRIBE EXHIBIT

\qquad (TJS-11).
A. In Exhibit___(TJS-11), I classify test period costs into functional categories. This is my first step. Exhibit___(TJS-11) consists of four tables. Table 1 shows a summary of rate base and total cost of service by functional classification. Table 2 shows the functional classification of rate base. Table 3 shows the functional classification of operation and maintenance expenses. Table 4 shows the functional classification of depreciation expenses, taxes other than income taxes, and other operating revenues.

I classify costs in Exhibit \qquad (TJS-11) into ten functions: gas supply - demand and commodity, transmission - demand and commodity, distribution - demand and customer, services, meters and regulators, customer accounts, and direct.

Gas supply demand costs include purchased gas demand charges and underground storage related costs. Gas supply commodity costs include purchased gas costs, transportation commodity charges, and other gas supply expenses. Rate base, return and income taxes associated with the purchased gas cash working capital requirements are split between gas supply demand and commodity on the basis of purchased gas costs.

Gathering, transmission, and a portion of distribution mains related costs are classified as transmission. Also classified as transmission commodity is a \$0.001 per therm allowance. Two-thirds of fixed gathering and transmission related costs are classified as transmission demand and one-third as transmission commodity. Variable gathering and transmission related costs which include compressor station fuel and load dispatching costs are classified as commodity.

The classification of investment in transmission and distribution mains is based on a detailed study of the Company's investment and the relative capacity of these facilities. Using the results of this study, I classify 19.40 percent of the fixed costs associated with distribution mains as transmission related costs with
two-thirds of these costs classified as demand related and one-third as commodity related.

I classify the remaining 80.60 percent of the fixed costs associated with distribution mains as distribution with a demand component (40.68 percent) and a customer component (39.92 percent)

I classify costs associated with the services as services related costs.

I classify costs associated with meters and regulators as meters and regulators related costs.

I classify customer accounting expenses as customer accounts related costs. Fifty percent of customer service and information expenses and sales expenses are classified as customer accounts related costs. The remaining 50 percent are classified as transmission commodity related costs and allocated on a volumetric basis.

The direct assigned classification includes revenues associated with forfeited discounts.
Q.

PLEASE EXPLAIN THE \$0.001 PER THERM SUPPLY ALLOWANCE YOU ASSIGN TO TRANSMISSION COMMODITY COST.

A. Consistent with past treatment, I assign a portion of administrative and general salaries equal to $\$ 0.001$ per therm to transmission commodity related costs to recognize the administrative and general salaries devoted to obtaining gas supply, addressing gas supply and transmission matters, and maintaining relationships with gas suppliers and transporters for the benefit of all customers and all gas (sales and transportation) delivered through the Company's system.

Q. PLEASE DISCUSS THE CONTENTS OF EXHIBIT
 \qquad (TJS-12).

A. Exhibit__(TJS-12) sets forth the results of my allocation of functionally classified costs to customer classes. Exhibit___(TJS-12) consists of five tables. Table 1 shows the development of class rates of return under current and proposed rates. Table 2 shows the allocation of total functional cost to customer classes. Table 3 shows the allocation of rate base to customer classes. Table 4 shows the allocation base I use to allocate total functional cost of service and rate base to customer classes. Table 5 shows the unit (\$/therm or \$/bill) functionalized cost of service.

Q. HOW DO YOU DEFINE CUSTOMER CLASSES IN YOUR COST OF SERVICE STUDY?

A. I define six customer classes in my cost of service study: Residential, Small Commercial, Small Volume Firm and Transportation, Large Volume Firm and Transportation, Small Volume Interruptible, and Large Volume Interruptible. Customers served under the Company's Transportation Service rate schedule at full margin are included with the small volume firm or large volume firm classes. The Company is proposing to eliminate the Wholesale tariff and merge those
customers into the Large Volume rate. I have included the Wholesale customers in the Large Volume Firm class. I credit revenues from customers taking service under the Company's Transportation Service rate schedules at negotiated margins and Irrigation customers (sales and transportation) to cost of service.
Q. PLEASE DISCUSS THE PRINCIPAL ALLOCATION BASES YOU USE IN YOUR CLASS COST OF SERVICE STUDY.
A. Table 4 of Exhibit___(TJS-12) shows the allocation factors I use to allocate functionally classified costs to the six customer classes.

Firm winter peak demand represents estimated class peak day requirements. The peak day requirements for the firm classes are estimated based on regression analysis of monthly sales and HDDs and analysis of winter period throughput to average throughput. The peak day requirements for the Interruptible customers are set equal to zero.

Winter period throughput represents test year throughput for each class during the months of November through March. The firm winter period sales allocation basis represents the same figure except that no volumes attributable to Interruptible Service or Transportation Service are included. The commodity allocation basis represents annual test period throughput for each class.

I develop the distribution-customer, services, meters and regulators, and customer accounting allocation bases by weighting average number of
customers. I weight the number of customers by factors that represent the relative cost or investment associated with service to each class. I use the customer weighting factors that I developed in my mains classification and customer weighting factor study included in my workpapers.

Q. HOW DO YOU ALLOCATE FUNCTIONALLY CLASSIFIED COSTS TO CUSTOMER CLASSES?

A. I allocate gas supply demand related costs to classes using an approach that results in 50 percent of the costs being allocated on the basis of firm winter period sales and 50 percent of the costs being allocated on the basis of the firm peak day sales.

I allocate transmission and distribution demand related costs to classes using an approach that results in 50 percent of the costs being allocated on the basis of winter period throughput and 50 percent of the costs being allocated on the basis of peak day deliveries. The only difference between this allocation basis and the one used to allocate gas supply demand related costs is that winter period Interruptible Service and Transportation Service customers are included in the allocation of transmission and distribution demand related costs whereas these customers are not allocated demand related gas supply costs. I allocate transmission commodity related costs to customer classes using annual throughput.

I allocate distribution customer, services, meters and regulators, and customer accounting related costs to classes on the basis of weighted number of customers. Weighting factors are used for each functional classification in order to recognize the relative difference in costs of these functions in serving the various customer classes.

Q. HOW DO YOU TREAT OTHER OPERATING REVENUES IN YOUR CLASS COST OF SERVICE STUDY?

A. In my class cost of service study, I credit other operating revenues to cost of service. The other operating revenues I credit to cost of service include: forfeited discounts, miscellaneous service revenues, transportation and sales revenues from customers served in competitive markets, other gas revenues, and customers' deposits interest expense. I directly assign forfeited discount revenues to the Residential class because this is the class that generally fails to pay bills prior to the "discount" date. I assign miscellaneous service revenues and other gas revenues based on supervised O\&M. I assign transportation and sales revenues from customers served in competitive markets to the transmission and distribution function in the same proportions as distribution and transmission mains. This treatment recognizes that the throughput resulting from supplying gas to these customers increases the efficiency of the Company's gas system. I assign interest expense on customer's deposits to Customer Accounting (the same function to which I assign customer deposits).
Q. WHAT REVENUES DID YOU INCLUDE WITH TRANSPORTATION AND SALES REVENUES FROM CUSTOMERS SERVED IN COMPETITIVE MARKETS?
A. I include revenues from transportation service provided at negotiated margin and revenues from Irrigation service (sales and transportation). Revenues, volumes, and number of customers from transportation service provided at full margin are included with the appropriate sales customer class in the class cost of service study.

Q. WHAT ARE THE PRINCIPAL FINDINGS OF YOUR STUDY?

A. The principal finding is that the overall rate of return on Black Hills Kansas gas utility operations under current rates amounts to 4.17 percent based on Kansas jurisdictional rate base of $\$ 131,193,233$. I summarize rates of return under current rates for Kansas jurisdictional sales customer classes in the table below.

Customer Class	Rate of Return
Residential	4.36%
Small Commercial	2.96%
Small Volume Firm	3.54%
Large Volume Firm	4.70%
Small Volume Interruptible	3.68%
Large Volume Interruptible	9.69%

For purposes of rate design (as discussed in the next section of my testimony), some of these classes are aggregated. The rate of return under current rates for the Residential and Small Commercial classes is 4.17 percent, for the Small Volume Firm, Transportation (full margin) and Interruptible classes is 3.54
percent, and for the Large Volume Firm, Transportation (full margin) and Interruptible classes is 4.85 percent.

As indicated by the rates of return under current rates, current rate revenues associated with service to Black Hills Kansas customers are insufficient to cover cost, including an opportunity for the Company to earn a reasonable return on its investment devoted to public service. In order for the Company to earn the 7.52 percent rate of return requested by the Company, current Kansas rate revenues must be increased by $\$ 7.28$ million.
Q. DOES THIS CONCLUDE YOUR PREPARED DIRECT TESTIMONY REGARDING YOUR CLASS COST OF SERVICE STUDY?
A. Yes, it does.
VIII. RATE DESIGN
Q. WHAT GUIDELINES DID YOU FOLLOW IN THE DESIGN OF PROPOSED RATES?
A. The guidelines are as follows:

1. The overall increase should be approximately $\$ 7.28$ million.
2. The increases for each class should align with the class cost of service study to the extent practical.
3. The proposed customer charges should reflect customer related costs to the extent practical.
4. The commodity charge for the Residential and Small Commercial rates should be equal maintaining past practice.
5. Maintain the existing differential between the Residential and Small Commercial commodity charge and the Small Volume commodity charge to the extent practical.
6. The Wholesale rate is eliminated and those customers are transferred to the Large Volume rate.
7. Pricing should reflect market pressures.
8. The customer and commodity (non-gas portion) should be the same for the Firm, Interruptible, and Transportation rates within the Small and Large Volume services.

Q. HAVE YOU PREPARED AN EXHIBIT SUMMARIZING YOUR PROPOSED RATE DESIGN?

A. Yes, I have. Exhibit ___(TJS-13) summarizes my proposed rates. Lines 1 through 15 show billing determinants, rates, and revenues under existing rates and Lines 16 through 41 show billing determinants, rates, and revenues under proposed rates. As shown on Line 11, revenues under existing rates include test year revenues collected under the Company's Gas System Reliability Surcharge ("GSRS") surcharge. Under proposed rates, the surcharge is assumed to be reset and the proposed customer charges will recover these revenues.

I also sponsor the Company's Schedule 17 which summarizes information from Exhibit___(TJS-13) and my class cost of service study.

Q. WHAT ARE THE SPECIFIC RATE DESIGN RECOMMENDATIONS YOU ARE MAKING?

A. I am making the following recommendations:

1. Increase the Residential customer charge from $\$ 16.00$ per month to $\$ 21.70$ per month.
2. Increase the Small Commercial customer charge from $\$ 22.75$ per month to $\$ 36.00$ per month.
3. Decrease the Residential and Small Commercial commodity charge slightly from $\$ 0.14524$ per therm to $\$ 0.14355$.
4. Increase the Small Volume customer charge from $\$ 40.00$ per month to $\$ 96.00$ per month.
5. Decrease the Small Volume commodity charge slightly from $\$ 0.12500$ per therm to $\$ 0.12482$ per therm.
6. Increase the Large Volume customer charge from $\$ 256.00$ per month to $\$ 400.00$ per month.
7. Increase the Large Volume commodity charge from $\$ 0.5900$ per therm to $\$ 0.06393$ per therm.
8. Increase the customer charge for the Large Volume negotiated margin customers to the same level as that recommended for the Large Volume customer charge, consistent with prior practice.
9. No changes to the Irrigation rates.

Q. PLEASE EXPLAIN MORE FULLY YOUR RECOMMENDED RESIDENTIAL AND SMALL COMMERCIAL RATES.

A. In designing the customer charges for these two classes, I am guided by two factors. First, the customer charge should be no less than the level that the customers are currently paying (including the GSRS). Currently, the Residential customers are paying a $\$ 16.00$ per month customer charge plus a GSRS of $\$ 1.53$ per month for a total of $\$ 17.53$ per month. The Small Commercial customers are paying a $\$ 22.75$ per month customer charge plus a GSRS of $\$ 3.11$ per month for a total of $\$ 25.86$ per month. Second, customer charges should reflect customer related costs. As shown in Table 5 of Exhibit \qquad (TJS12), customer related costs for the Residential class are $\$ 24.35$ per month and for the Small Commercial class, $\$ 40.51$.

If the customer charges for the Residential and Small Commercial classes were increased to a level that fully reflected customer related costs, the commodity charge for these rates would be reduced by over 30 percent to approximately $\$ 0.10$ per therm. Rather than recommending such a significant change in one rate case, I am recommending that all of the increase for the Residential and Small Commercial classes be recovered through increases in the customer charges with a small decrease to the existing commodity charge. I also designed the Residential and Small Commercial rates such that each class comes as close as practical (within rounding) of collecting its specific cost of service.

Following these parameters resulted in the customer charges and commodity charge I recommend above.

Q. PLEASE EXPLAIN THE RATES YOU ARE RECOMMENDING FOR THE SMALL VOLUME CLASS.

A. My guidelines are essentially the same for the Small Volume class as those for the Residential and Small Commercial classes with the additional guideline to maintain the existing differential between the commodity charges to the extent practical. The Small Volume customers are paying a $\$ 40.00$ per month customer charge plus a GSRS of $\$ 11.80$ per month for a total of $\$ 51.80$ per month. My class cost of service study indicates that customer related costs for this class are \$147.05 per month. Setting the proposed Small Volume customer charge at \$96 per month with a slight reduction in the commodity charge meets the parameters I recommend above.

Q. PLEASE EXPLAIN THE RATE YOU ARE RECOMMENDING FOR THE LARGE

 VOLUME CLASS.A. The Large Volume customer are currently paying a $\$ 256.00$ per month customer charge plus a GSRS of $\$ 19.00$ per month for a total of $\$ 275.00$ per month. My class cost of service study indicates that customer related costs for the Large Volume class are \$456. I am therefore recommending that the Large Volume customer charge be increased to $\$ 400.00$ per month with the remainder of the increase needed to recover class cost being recovered through an increase in the commodity charge. This results in an increase in the commodity charge for $\$ 0.5900$ per therm to $\$ 0.6393$ per therm.
Q. HOW ARE YOU REFLECTING THE PROPOSED INCREASE IN LARGE VOLUME RATES FOR THE NEGOTIATED MARGIN LARGE VOLUME CUSTOMERS?
A. I am recommending that the negotiated margin Large Volume customer charges be increased to $\$ 400.00$. Traditionally, the commodity charge has been treated as the negotiated portion of the rate. The test year number of bills rendered for the negotiated margin customers was 183. Therefore, this increase will result in \$26,352 in additional revenues. I have credited these additional revenues against the $\$ 7.28$ million overall increase thus reducing the revenue increase to the other customer classes to $\$ 7.25$ million as shown in Table 1 of Exhibit __(TJS-12).

Q. WHAT ARE YOU RECOMMENDING REGARDING THE IRRIGATION RATES?

A. I am recommending no changes to the irrigation rates. The Company continues to receive competitive threats to service to these customers.

Q. PLEASE DISCUSS THE IMPACT OF YOUR PROPOSED RATES BY CLASS.

A. As shown in Exhibit ___(TJS-12), the overall increase in rates equals 7.8 percent. For each class the percentage increases are as follows:

$$
\begin{aligned}
& \text { Residential }-7.5 \text { percent } \\
& \text { Small Commercial }-10.0 \text { percent } \\
& \text { Small Volume }-7.9 \text { percent } \\
& \text { Large Volume }-8.0 \text { percent } \\
& \text { Small Volume Interruptible }-9.2 \text { percent } \\
& \text { Large Volume Interruptible }-3.3 \text { percent }
\end{aligned}
$$

Q. HOW DO REVENUES UNDER YOUR PROPOSED RATES COMPARE TO COST OF SERVICE?

A. As shown in Exhibit \qquad (TJS-12), the rates of return under proposed rates for the Residential and Small Commercial classes, Small Volume classes, and Large Volume classes are each 7.52 percent.
Q. DOES THIS CONCLUDE YOUR PREPARED DIRECT TESTIMONY?
A. Yes, it does.

State of Missouri	
County of Ray) ss

AFFIDAVIT OF THOMAS J. SULLIVAN

I, Thomas J. Sullivan, being first duly sworn on oath, depose and state that I am the same Thomas J. Sullivan identified in the foregoing Direct Testimony; that I have caused the foregoing Direct Testimony to be prepared and am familiar with the contents thereof, and that the foregoing Direct Testimony as identified therein is true and correct to the best of my knowledge, information, and belief as of the date of this Affidavit.

Thomas J, Sullivan

Subscribed and sworn to before me, A Notary Public, in and for said County and State, this $/ 4$ th day of lepril. 2014

\qquad

Expert Witness Testimony of Thomas J. Sullivan

- Peoples Natural Gas Company of South Carolina, South Carolina Public Service Commission Docket No. 88-52-G (1988). Natural gas utility revenue requirements and rate design.
- Peoples Natural Gas (UtiliCorp United, Inc.), Iowa Utilities Board Docket No. RPU-92-6 (1992). Natural gas utility class cost of service study and peak day demand requirements.
- Peoples Natural Gas (UtiliCorp United, Inc.), Kansas Corporation Commission Docket No. 193,787-U (1996). Natural gas utility class cost of service study, rate design, and peak day demand requirements.
- Southern Union Gas Company, Railroad Commission of Texas Gas Utilities Docket No. 8878 (1998). Natural gas utility depreciation rates.
- Southern Union Gas Company, City of El Paso (1999). Natural Gas utility depreciation rates.
- UtiliCorp United, Inc., Kansas Corporation Commission Docket No. 00-UTCG-336RTS (1999). Natural gas utility weather normalization, class cost of service, and rate design.
- Philadelphia Gas Works, Pennsylvania Public Utility Commission Docket No. R00006042 (2001). Natural gas utility revenue requirements.
- Missouri Gas Energy, Missouri Public Service Commission Docket No. GR-2001292 (2001). Natural gas utility depreciation rates.
- Aquila Networks, Iowa Utilities Board Docket No. RPU-02-5 (2002). Natural gas utility class cost of service study, rate design, and weather normalization adjustment.
- Aquila Networks, Michigan Gas Utilities, Michigan Public Service Commission Case No. U-13470 (2002). Natural gas utility class cost of service study, rate design, and weather normalization adjustment.
- Aquila Networks, Nebraska Public Service Commission Docket No. NG-0001, NG0002, NG0003 (2003). Natural gas utility weather normalization adjustment.
- Aquila Networks, Missouri Public Service Commission Docket No. GR-2003 (2003). Natural gas utility class cost of service study, rate design, annualization adjustment, and weather normalization adjustment.
- North Carolina Natural Gas, North Carolina Utilities Commission Docket No. G-21-Sub 442 (2003). Filed intervenor testimony on behalf of the municipal customers regarding natural gas cost of service and rates related to intrastate transmission service.
- Texas Gas Service Company, Division of ONEOK, Railroad Commission of Texas Gas Utilities Docket No. 9465 (2004). Natural gas utility depreciation rates.
- Missouri Gas Energy, Missouri Public Service Commission Docket No. GR-20040209 (2004). Natural gas utility depreciation rates.
- Aquila Networks, Kansas Corporation Commission Docket No. 05-AQLG-367-RTS (2004). Natural gas utility class cost of service study, rate design, and weather normalization adjustment.
- Aquila Networks, lowa Utilities Board Docket No. RPU-05-02 (2005). Natural gas utility class cost of service study, rate design, grain drying adjustment and weather normalization adjustment.
- PJM Interconnection, LLC, Federal Energy Regulatory Commission Docket No. ER05-1181 (2005). Operating cash reserve requirements.
- Kinder Morgan, Inc., Wyoming Public Service Commission Docket No. 30022-GR-673 (2006). Natural gas utility weather normalization adjustment, development of load factors, billing cycle adjustment, determination of test year billing units and revenue, and depreciation rates.
- Missouri Gas Energy, Missouri Public Service Commission Docket No. GR-20060422 (2006). Natural gas utility depreciation rates.
- Kinder Morgan, Inc., Nebraska Public Service Commission Docket No. NG-0036 (2006). Natural gas utility weather normalization adjustment, test year billing determinates and revenue under existing rates and customer and usage trends.
- Aquila Networks, Kansas Corporation Commission Docket No. 07-AQLG-431-RTS (2006). Natural gas utility class cost of service study, rate design, irrigation adjustment, and weather normalization adjustment.
- Aquila Networks, Nebraska Public Service Commission Docket No. NG-0041-RTS (2006). Natural gas utility jurisdictional and class cost of service study, rate design, and revenue synchronization adjustment.
- Zia Natural Gas Company, New Mexico Public Regulation Commission Case No. 08-00036-UT (2008). Natural gas utility billing determinants and revenues, weather normalization adjustment, customer growth adjustment, peak day analysis, revenue requirement, class cost of service study, and rate design.
- SourceGas Distribution, LLC, The Public Utilities Commission of the State of Colorado Docket No. 08S-0108G (2008). Natural gas utility weather normalization adjustment, irrigation adjustment, group load factor analysis, therm billing, test year billing determinants and revenues, and trends in customer usage.
- Black Hills/lowa Gas Utility Company, LLC (fka Aquila Networks), Iowa Utilities Board Docket No. RPU-08-3 (2008). Natural gas utility weather normalization adjustment, grain drying adjustment, revenue synchronization adjustment, class cost of service study, and rate design.
- Black Hills/Colorado Gas Utility Company, LLC (fka Aquila Networks), The Public Utilities Commission of the State of Colorado Docket No. 08S-430G (2008.) Natural gas utility weather normalization, revenue synchronization adjustment, customer reclassification, thermal billing, test year billing determinants, revenues under existing and proposed rates, class cost of service study, and rate design.
- Wyoming Gas Company, Wyoming Public Service Commission Docket No 30009-48-GR-8 (2008). Natural gas utility weather normalization adjustment, test year billing determinants, revenues under existing and proposed rates, rate of return, revenue requirement, class cost of service study, and rate design.
- Missouri Gas Energy, Missouri Public Service Commission Docket No. GR-20090355 (2009). Natural gas utility depreciation rates.
- Empire District Gas Company, Missouri Public Service Commission Docket No. GR-2009-0434 (2009). Natural gas utility depreciation rates.
- SourceGas Distribution, LLC, Nebraska Public Service Commission Docket No. NG-0060-RTS (2009). Natural gas utility customer and usage trends and adjustments; weather normalization adjustment, customer change adjustment, use per customer adjustment, and inflation adjustment riders; and competitive factors.
- Black Hills/Nebraska Gas Utility Company, LLC (f.k.a. Aquila Networks), Nebraska Public Service Commission Docket No. NG-0061 (2009). Natural Gas Utility jurisdictional class cost of service study, rate design, weather normalization adjustment, and synchronization adjustment.
- SourceGas Distribution, LLC, Wyoming Public Service Commission Docket No. 30022-148-GR-10 (2010). Natural gas utility use per customer adjustment factor, inflation adjustment factor, and uncollectible accounts factor and competitive issues.
- Black Hill/Iowa Gas Utility Company, LLC (f.k.a. Aquila Networks), Iowa Utilities Board Docket No. RPU-2010-0002 (2010). Natural gas utility class cost of service study, rate design, weather normalization adjustment, grain dryer adjustment, annualization adjustment, ethanol plant adjustment, and synchronization adjustment.
- The Empire District Electric Company, Missouri Public Service Commission Docket No. ER-2011-0004 (2010). Electric utility depreciation rates.
- The Empire District Electric Company, Corporation Commission of Oklahoma Cause No. PUD 201100082 (2011). Electric utility depreciation rates.
- SourceGas Distribution, LLC, Public Service Commission of the State of Nebraska Docket No. NG-67 (2011). Natural gas utility jurisdictional and class cost of service study, rate design, customer adjustment factor rider, use per customer adjustment factor rider, and competitive issues.
- Interstate Power and Light Company, Iowa Utilities Board Docket No. RPU-20120002 (2012). Natural gas utility weather normalization adjustment and class cost of service study.
- The Empire District Electric Company, Missouri Public Service Commission Docket No. ER-2012-0345 (2012). Electric utility depreciation rates.
- Rocky Mountain Natural Gas Company LLC, Public Utilities Commission of the State of Colorado Docket No. 13AL-0067G (2013). Intrastate natural gas pipeline cost of service study and rate design.
- Rocky Mountain Natural Gas Company LLC, Public Utilities Commission of the State of Colorado Docket No. 13AL-067G (2013). Safety and System Integrity Rider (SSIR).
- SourceGas Distribution LLC, Public Utilities Commission of the State of Colorado Docket No. 13AL-143G (2013). Tariff provisions to incorporate Docket No. 13AL0067G unbundling and tariff changes.
(A)
(B)
(C)
(D)
(E)
(F)
(G)
(H)
(I)

Line No.	Month	Year	Goodland Renner Field	Dodge City	Garden City Exp. Station	Liberal	Hutchinson 10 SW	Wichita Mid- Continent	Topeka

1 1981-2010 NOAA Normal HDDs								
2 January		1,096	1,018	1,073	959	1,076	1,017	1,114
3 February		914	815	872	774	840	780	878
4 March		758	640	687	609	646	577	649
5 April		480	352	399	325	345	291	332
6 May		211	115	146	104	109	80	108
7 June		37	13	20	11	8	6	11
8 July		4	1	1	1	1	0	0
9 August		8	3	4	2	3	1	3
10 September		112	61	73	53	58	42	64
11 October		416	291	336	273	294	243	317
12 November		779	658	705	628	662	590	653
13 December		1,088	1,000	1,041	951	1,035	967	1,049
14 Total		5,903	4,967	5,357	4,690	5,077	4,594	5,178
15 Actual Annual Averages								
16	2013	6,083	5,294	5,571	5,239	5,578	4,867	5,318
17	2012	5,015	4,190	4,520	4,146	4,108	3,507	3,778
18	2011	5,943	5,035	5,522	4,862	4,988	4,548	5,014
19	2012-13	5,549	4,742	5,046	4,693	4,843	4,187	4,548
20	2011-13	5,680	4,840	5,204	4,749	4,891	4,307	4,703
21	2010-13	5,695	4,860	5,193	4,684	4,910	4,337	4,773
22	2009-13	5,759	4,882	5,230	4,691	4,958	4,378	4,810
23	2008-13	5,791	4,897	5,254	4,692	5,023	4,498	4,901
24	2007-13	5,833	4,890	5,271	4,687	5,025	4,522	4,882
25	2006-13	5,787	4,813	5,211	4,611	4,938	4,430	4,800
26 Difference - Actual from Normal								
27	2013	3.0\%	6.6\%	4.0\%	11.7\%	9.9\%	5.9\%	2.7\%
28	$13 \mathrm{mo}, 2013$	2.9\%	4.6\%	2.5\%	9.5\%	6.9\%	2.7\%	-0.4\%
29	2012	-15.0\%	-15.6\%	-15.6\%	-11.6\%	-19.1\%	-23.7\%	-27.0\%
30	2011	0.7\%	1.4\%	3.1\%	3.7\%	-1.8\%	-1.0\%	-3.2\%
31	2012-13	-6.0\%	-4.5\%	-5.8\%	0.1\%	-4.6\%	-8.9\%	-12.2\%
32	2011-13	-3.8\%	-2.6\%	-2.8\%	1.3\%	-3.7\%	-6.2\%	-9.2\%
33	2010-13	-3.5\%	-2.1\%	-3.1\%	-0.1\%	-3.3\%	-5.6\%	-7.8\%
34	2009-13	-2.4\%	-1.7\%	-2.4\%	0.0\%	-2.3\%	-4.7\%	-7.1\%
35	2008-13	-1.9\%	-1.4\%	-1.9\%	0.0\%	-1.1\%	-2.1\%	-5.3\%
36	2007-13	-1.2\%	-1.6\%	-1.6\%	-0.1\%	-1.0\%	-1.6\%	-5.7\%
37	2006-13	-2.0\%	-3.1\%	-2.7\%	-1.7\%	-2.7\%	-3.6\%	-7.3\%

38 Note: Data taken from July Kansas Climatological Data - Monthly and Seasonal Heating Degree Days prior to July 2013 39 After July 2013, data taken from NOAA Online Weather Data

	[A] [B]	[C]	[D]	[E]	[F]	[G]	[H]	[1]	[J]	[K]	[L]	[M]
$\begin{aligned} & \hline \text { Line } \\ & \text { No. } \\ & \hline \end{aligned}$	Annual HDDs Description	2004-2013	2005-2013	2006-2013	2007-2013	2008-2013	2009-2013	2010-2013	2011-2013	2012-2013	2013	Comments
46	Weather Station - Topeka (Lawrence)											
47	Constant	0.7741	0.7646	0.7613	0.7364	0.7110	0.7123	0.7117	0.7449	0.8436	0.7709	
48	Current Month's HDD	0.0031	0.0030	0.0028	0.0026	0.0026	0.0025	0.0023	0.0017	0.0009	0.0016	
49	Previous Month's HDD	0.0087	0.0087	0.0089	0.0092	0.0092	0.0092	0.0094	0.0098	0.0104	0.0101	
50	Adjusted R Squared	0.9728	0.9739	0.9758	0.9768	0.9767	0.9747	0.9750	0.9799	0.9800	0.9779	
51	F	2,129.4216	2,001.1927	1,918.9760	1,750.9627	1,487.6756	1,139.4836	917.4750	854.8773	564.4602	244.5765	
52	1981-2010 NOAA Normal 5,178											
53	Predicted Normal Use/Customer - dekatherms	70.35	70.03	69.59	69.94	69.65	69.42	68.90	68.20	68.58	69.94	L47 $\times 12+(\mathrm{L48}+\mathrm{L49})^{*}$ Column B, L52
54	Predicted Peak Day Use/Customer - dekatherms	0.85	0.85	0.84	0.85	0.85	0.85	0.84	0.83	0.82	0.85	(L47 x 12) / $365+($ L48 * Note(1) + L49 x Note(1))
55	Load Factor	22.65\%	22.63\%	22.64\%	22.54\%	22.46\%	22.47\%	22.49\%	22.63\%	22.97\%	22.66\%	L53 / 365 / L54
56	Time Period Used						xxxxx					
57	Weather Station - Liberal											
58	Constant	1.1953	1.1665	1.1427	1.1042	1.0861	1.0926	1.0792	1.0913	1.1743	1.1665	
59	Current Month's HDD	0.0034	0.0034	0.0033	0.0034	0.0035	0.0034	0.0031	0.0031	0.0027	0.0036	
60	Previous Month's HDD	0.0089	0.0088	0.0088	0.0089	0.0087	0.0087	0.0090	0.0086	0.0087	0.0079	
61	Adjusted R Squared	0.9695	0.9706	0.9724	0.9711	0.9708	0.9692	0.9707	0.9697	0.9691	0.9617	
62	F	1,890.2040	1,767.1247	1,676.1007	1,397.2332	1,180.8558	928.6844	780.8440	560.2002	362.2621	139.0926	
63	1981-2010 NOAA Normal 4,690											
64	Predicted Normal Use/Customer - dekatherms	72.07	71.36 0.89	70.67	70.63	70.14	70.01	69.35	68.27	67.65	68.11	L58 $\times 12+(L 59+$ L60) * Column B, L63
65	Predicted Peak Day Use/Customer - dekatherms	0.90	0.89	0.89	0.89	0.89	0.89	0.88	0.86	0.84	0.85	(L58 × 12) / $365+($ L59 * Note(1) + L60 x Note(1))
66	Load Factor	21.92\%	21.86\%	21.81\%	21.68\%	21.64\%	21.67\%	21.66\%	21.76\%	22.12\%	22.06\%	L64 / 365 / L65
67	Time Period Used						xxxxx					
68	Weather Station - Wichita											
69	Constant	0.9771	0.9650	0.9730	0.9417	0.9332	0.9523	0.9610	0.9979	1.0821	1.0205	
70	Current Month's HDD	0.0042	0.0041	0.0039	0.0038	0.0040	0.0037	0.0036	0.0035	0.0030	0.0038	
71	Previous Month's HDD	0.0087	0.0087	0.0089	0.0091	0.0089	0.0093	0.0094	0.0093	0.0096	0.0092	
72	Adjusted R Squared	0.9727	0.9737	0.9759	0.9759	0.9766	0.9795	0.9805	0.9788	0.9752	0.9691	
73	F	2,124.0618	1,978.6801	1,927.5581	1,680.3029	1,480.6473	1,407.4538	1,180.8805	807.9385	454.0827	173.5208	
74	1981-2010 NOAA Normal 4,594											
75	Predicted Normal Use/Customer - dekatherms	71.04	70.64	70.25	70.41	70.54	71.38	71.35	70.63	70.66	71.96	L69 $12+(\mathrm{L} 70+\mathrm{L} 71){ }^{*}$ Column B, L74
76	Predicted Peak Day Use/Customer - dekatherms	0.94	0.93	0.92	0.93	0.93	0.94	0.94	0.93	0.91	0.94	(L69 x 12) / $365+($ L70 * Note(1) + L71 x Note(1))
77	Load Factor	20.80\%	20.77\%	20.82\%	20.71\%	20.67\%	20.70\%	20.73\%	20.88\%	21.17\%	20.90\%	L75 / 365 / L76
78	Time Period Used						xxxxx					
79	sc, sv, and LV											
80	Weather Station - Dodge City											
81	Constant	7.6585	7.7159	7.7876	7.6975	7.5435	7.4671	7.5034	7.6570	8.3178	8.1367	
82	Current Month's HDD	0.0103	0.0107	0.0098	0.0102	0.0109	0.0110	0.0094	0.0097	0.0064	0.0079	
83	Previous Month's HDD	0.0318	0.0312	0.0319	0.0319	0.0316	0.0319	0.0335	0.0326	0.0334	0.0330	
84	Adjusted R Squared	0.9527	0.9533	0.9566	0.9569	0.9628	0.9615	0.9599	0.9567	0.9548	0.9461	
85	F	1,199.6797	1,094.1866	1,049.1710	921.7560	919.7272	737.6963	563.1488	387.3220	243.7415	97.5793	
86	1981-2010 NOAA Normal 4,967											
87	Predicted Normal Use/Customer - dekatherms	301.01 3	300.93 3.19	300.34 3.17	301.33 3	301.68 3	302.49 3	303.17 3.25	302.26	297.92	300.99	L81 x $12+($ L82 + L83) * Column B, L86
88	Predicted Peak Day Use/Customer - dekatherms	3.20	3.19 25.85%	3.17 25.94%	3.20 25.82%	3.22 25.64%	3.25 25.53%	3.25 25.55%	3.22 25.75%	36.07	3.13 26.32%	(L81 x 12) / 365 + (L82 * Note(1) + L83 x Note(1)) L87/365/L88
90	Time Period Used						xxxxx					

	[A] [B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]
$\begin{aligned} & \text { Line } \\ & \text { No. } \end{aligned}$	Description $\begin{array}{c}\text { Annual } \\ \text { HDDs }\end{array}$	2004-2013	2005-2013	2006-2013	2007-2013	2008-2013	2009-2013	2010-2013	2011-2013	2012-2013	2013	Comments
91	Weather Station - Garden City											
92	Constant	3.0372	2.9482	2.8736	2.8592	2.7402	2.8186	2.9191	3.0117	3.3049	3.4460	
93	Current Month's HDD	0.0134	0.0133	0.0132	0.0136	0.0142	0.0138	0.0128	0.0137	0.0133	0.0177	
94	Previous Month's HDD	0.0267	0.0268	0.0270	0.0272	0.0270	0.0275	0.0285	0.0278	0.0283	0.0255	
95	Adjusted R Squared	0.9611	0.9614	0.9619	0.9640	0.9635	0.9634	0.9620	0.9600	0.9502	0.9491	
96	F	1,469.3303	1,331.7886	1,199.1772	1,112.7277	938.8091	778.0390	595.8458	420.5777	220.2559	103.4788	
97	1981-2010 NOAA Normal 5,357											
98	Predicted Normal Use/Customer - dekatherms	251.24	250.12	249.90	252.93	253.47	255.09	256.51	258.44	262.72	272.41	L92 $\times 12+($ L93 + L94) * Column B, L97
99	Predicted Peak Day Use/Customer - dekatherms	2.91	2.90	2.91	2.95	2.97	2.98	2.99	3.00	3.02	3.13	(L92 $\times 12$) / $365+($ L93 * Note(1) + L94 \times Note(1))
100	Load Factor	23.68\%	23.61\%	23.53\%	23.48\%	23.36\%	23.42\%	23.50\%	23.57\%	23.81\%	23.83\%	L98 / 365 / L99
101	Time Period Used						xxxxx					
102	Weather Station - Goodland											
103	Constant	2.4891	2.5306	2.5342	2.5714	2.4767	2.4961	2.6649	3.1818	3.4037	3.8225	
104	Current Month's HDD	0.0038	0.0041	0.0040	0.0045	0.0064	0.0068	0.0052	0.0075	0.0078	0.0145	
105	Previous Month's HDD	0.0315	0.0306	0.0304	0.0301	0.0287	0.0283	0.0293	0.0265	0.0266	0.0208	
106	Adjusted R Squared	0.9476	0.9549	0.9555	0.9554	0.9561	0.9526	0.9530	0.9598	0.9530	0.9606	
107	F	1,076.0388	1,133.2555	1,021.4104	889.8210	774.3605	593.2265	477.7032	418.6967	233.9511	135.1527	
108	1981-2010 NOAA Normal 5,903											
109	Predicted Normal Use/Customer - dekatherms	238.44	234.90	233.50	235.19	236.74	236.83	236.03	239.07	243.76	254.19	L103 x $12+($ L104 + L105) * Column B, L108
110	Predicted Peak Day Use/Customer - dekatherms	2.56	2.51	2.49	2.51	2.54	2.54	2.51	2.49	2.52	2.60	(L103 $\times 12$ / $365+$ (L104 * Note(1) + L105 \times Note(1))
111	Load Factor	25.57\%	25.65\%	25.68\%	25.70\%	25.57\%	25.59\%	25.79\%	26.34\%	26.52\%	26.83\%	L109 / 365 / L110
112	Time Period Used						xxxxx					
113	Weather Station - Hutchinson											
114	Constant	1.6593	1.6914	1.6362	1.6340	1.4714	1.4241	1.6360	1.3041	2.0826	2.8810	
115	Current Month's HDD											Not a significant variable
116	Previous Month's HDD	0.0624	0.0634	0.0650	0.0664	0.0683	0.0708	0.0727	0.0763	0.0697	0.0568	
117	Adjusted R Squared	0.8914	0.8912	0.8974	0.9001	0.9019	0.9044	0.9040	0.8953	0.8539	0.9679	
118	F	977.7788	877.2915	831.6720	748.8575	653.4829	559.1335	443.6094	300.2006	135.4427	332.1638	
119	1981-2010 NOAA Normal 5,077											
120	Predicted Normal Use/Customer - dekatherms Predicted Peak Day Use/Customer - dekatherms	336.55	341.94	349.57	356.56	364.64	376.34	388.93	403.09	378.94	322.86	L114 $\times 12+(\mathrm{L} 115+\mathrm{L} 116)^{*}$ Column B, L119
121		4.42	20.86\%	20.81\%	20.79\%	20.67\%	${ }_{5}^{5.00}$	20.71\%	20.51\%	20.98\%	21.74\%	L120 / 365 / L121
$\begin{aligned} & 122 \\ & 123 \end{aligned}$	Load Factor	20.86\%					$\begin{aligned} & \text { 20.62\% } \\ & \text { XXXXX } \end{aligned}$					
	Time Period Used XXXXX											
124	Weather Station - Topeka (Lawrence)											
125	Constant	5.1409	5.0823	5.0672	4.9673	4.8481	4.8141	4.8179	5.0339	5.3739	4.9760	
126	Current Month's HDD	0.0104	0.0101	0.0093	0.0087	0.0084	0.0078	0.0064	0.0042	0.0025	0.0047	
127	Previous Month's HDD	0.0306	0.0311	0.0319	0.0328	0.0333	0.0336	0.0344	0.0355	0.0366	0.0359	
128	Adjusted R Squared	0.9659	0.9685	0.9685	0.9710	0.9706	0.9698	0.9721	0.9738	0.9758	0.9701	
129	F	1,687.1393	1,461.2816	1,461.2816	1,391.0979	1,171.6419	947.9054	818.4678	650.7857	463.8510	179.3449	
130	1981-2010 NOAA Normal 5,178											
131	Predicted Normal Use/Customer - dekatherms	273.99	274.27	273.76	274.91	273.85	272.15	269.47	265.90	267.12	270.13	L125 $\times 12+($ L126 + L127) * Column B, L130
132	Predicted Peak Day Use/Customer - dekatherms	3.04	3.05	3.05	3.07	3.08	3.06	3.02	2.94	2.92	3.01	(L125 x 12) / $365+($ L126 * Note(1) + L127 \times Note(1))
133	Load Factor	24.70\%	24.63\%	24.63\%	24.50\%	24.40\%	24.40\%	24.45\%	24.75\%	25.10\%	24.60\%	L131 / 365 / L132
134	Time Period Used						XXXXX					

	[A] [B]	[C]	[D]	[E]	[F]	[G]	[H$]$	[1]	[J]	[K]	[L]	[M]
$\begin{aligned} & \hline \text { Line } \\ & \text { No. } \\ & \hline \end{aligned}$	Description $\begin{array}{cc}\text { Annual } \\ \text { HDDs }\end{array}$	2004-2013	2005-2013	2006-2013	2007-2013	2008-2013	2009-2013	2010-2013	2011-2013	2012-2013	2013	Comments
135	Weather Station - Liberal											
136	Constant	2.0561	2.0305	2.0187	1.9731	1.9568	2.0409	2.1885	2.3758	2.7111	2.9532	
137	Current Month's HDD	0.0067	0.0067	0.0065	0.0066	0.0069	0.0067	0.0061	0.0059	0.0049	0.0066	
138	Previous Month's HDD	0.0316	0.0315	0.0315	0.0318	0.0314	0.0316	0.0319	0.0312	0.0312	0.0299	
139	Adjusted R Squared	0.9650	0.9644	0.9646	0.9644	0.9634	0.9622	0.9645	0.9649	0.9650	0.9648	
140	F	1,641.1254	1,450.4514	1,297.1536	1,125.3227	935.9694	751.0253	639.5086	481.4539	317.8738	151.8002	
141	1981-2010 NOAA Normal 4,690											
142	Predicted Normal Use/Customer - dekatherms	204.06	203.44	202.53	203.81	203.17	204.07	204.62	202.43	201.73	206.54	L136 x $12+($ L137 + L138) * Column B, L141
143	Predicted Peak Day Use/Customer - dekatherms	2.74	2.74	2.73	2.75	2.75	2.75	2.73	2.67	2.61	2.65	(L136 x 12) / $365+($ L137 * Note(1) + L138 x Note(1))
144	Load Factor	20.37\%	20.35\%	20.34\%	20.28\%	20.27\%	20.35\%	20.50\%	20.74\%	21.14\%	21.35\%	L142 / 365 /L143
145	Time Period Used						xxxxx					
146	Weather Station - Wichita											
147	Constant	4.2227	4.1728	4.1954	3.9173	3.7879	3.9874	4.0338	4.0068	4.5138	3.9301	
148	Current Month's HDD	0.0199	0.0195	0.0179	0.0177	0.0182	0.0171	0.0167	0.0157	0.0134	0.0186	
149	Previous Month's HDD	0.0384	0.0382	0.0389	0.0395	0.0386	0.0393	0.0392	0.0391	0.0392	0.0365	
150	Adjusted R Squared	0.9564	0.9589	0.9649	0.9633	0.9643	0.9650	0.9662	0.9620	0.9568	0.9518	
151	F	1,306.2125	1,250.5391	1,308.3611	1,091.7628	959.4083	814.4607	672.2190	443.8446	255.8066	109.5816	
152	1981-2010 NOAA Normal 4,594											
153	Predicted Normal Use/Customer - dekatherms	318.42	315.14	311.25	309.58	306.40	307.03	305.23	300.04	295.72	300.19	L147 x $12+($ L148 + L149) * Column B, L152
154	Predicted Peak Day Use/Customer - dekatherms	4.22	4.18	4.11	4.13	4.10	4.08	4.05	3.97	3.83	3.98	(L147 $\times 12$) / $365+($ L148 * Note(1) + L149 x Note(1))
155	Load Factor	20.68\%	20.67\%	20.73\%	20.54\%	20.47\%	20.62\%	20.67\%	20.70\%	21.16\%	20.64\%	L153 / 365 / L154
156	Time Period Used						xxxxx					
Notes: (1) Peak HDD used to calculate load factor:												
	$\frac{\text { Current }}{70.0} \quad \frac{\text { Previous }}{700}$											

[A]		[B]	[C]	[D]	[E]	[F] [G]		[H]	[1]	[J]	[K]	[L]	[M]	[N]	[O]		
$\begin{gathered} \text { Line } \\ \text { No. } \\ \hline \end{gathered}$	Customer Classification	Weather Station	2013 Month	HDDCurrent Month		HDD Previous Month		Per Customer Adjustment	Test Year \# of Cust.	Volumetric Adjustment	Margin		Cost of Gas		Total		
				Actual	Normal (1)	Actual	Normal (1)						Adjustment				
1	Residential (K	S001)						therms/cust. (3)		therms	\$/therms (4)	$\begin{gathered} \$ \\ {[J] X[K]} \end{gathered}$			\$/therms (4)	$\begin{gathered} \$ \\ {[J] \times[M]} \end{gathered}$	$\begin{gathered} \$ \\ {[\mathrm{~L}]+[\mathrm{N}]} \end{gathered}$
2		Dodge City			0.0042	(2)	0.0078	(2)									
4			January	989	1,018	(2) 946	1,000	5.44	10,605	57,639	0.14524	8,371	0.4982	28,717	37,088		
5			February	863	815	989	1,018	0.26	10,615	2,780	0.14524	404	0.4982	1,385	1,789		
6			March	698	640	863	815	(6.18)	10,654	$(65,818)$	0.14524	$(9,559)$	0.4982	$(32,792)$	$(42,352)$		
7			April	486	352	698	640	(10.14)	10,643	$(107,879)$	0.14524	$(15,668)$	0.4982	$(53,748)$	$(69,416)$		
8			May	138	115	486	352	(11.44)	10,568	$(120,905)$	0.14524	$(17,560)$	0.4982	$(60,238)$	$(77,798)$		
9			June	12	13	138	115	(1.76)	10,536	$(18,511)$	0.14524	$(2,689)$	0.4982	$(9,223)$	$(11,911)$		
10			July	-	1	12	13	0.12	10,511	1,261	0.14524	183	0.4982	628	812		
11			August	-	1	-	1	0.20	10,490	2,136	0.14524	310	0.4982	1,064	1,374		
12			September	16	61	-	3	2.12	10,461	22,128	0.14524	3,214	0.4982	11,025	14,239		
13			October	324	291	16	61	2.14	10,483	22,434	0.14524	3,258	0.4982	11,177	14,435		
14			November	688	658	324	291	(3.83)	10,514	$(40,316)$	0.14524	$(5,856)$	0.4982	$(20,087)$	$(25,942)$		
15			December	1,080	1,000	688	658	(5.69)	10,635	$(60,509)$	0.14524	$(8,788)$	0.4982	$(30,147)$	$(38,935)$		
16			Total	5,294	4,967	5,160	4,967	(28.76)	10,560	$(305,561)$		$(44,380)$		$(152,238)$	$(196,617)$		
17		Garden City			0.0035	(2)	0.0077	(2)									
18			January	1,059	1,073	985	1,041	4.80	17,467	83,908	0.14524	12,187	0.4982	41,805	53,992		
19			February	887	872	1,059	1,073	0.56	17,465	9,768	0.14524	1,419	0.4982	4,866	6,285		
20			March	734	687	887	872	(2.79)	17,490	$(48,743)$	0.14524	$(7,079)$	0.4982	$(24,285)$	$(31,364)$		
21			April	541	399	734	687	(8.55)	17,529	$(149,865)$	0.14524	$(21,766)$	0.4982	$(74,666)$	$(96,433)$		
22			May	167	146	541	399	(11.68)	17,410	$(203,317)$	0.14524	$(29,530)$	0.4982	$(101,297)$	$(130,827)$		
23			June	15	20	167	146	(1.45)	17,393	$(25,149)$	0.14524	$(3,653)$	0.4982	$(12,530)$	$(16,182)$		
24			July	-	1	15	20	0.42	17,310	7,274	0.14524	1,057	0.4982	3,624	4,681		
25			August	-	4	-	1	0.22	17,260	3,726	0.14524	541	0.4982	1,856	2,397		
26			September	19	73	-	4	2.18	17,191	37,501	0.14524	5,447	0.4982	18,684	24,131		
27			October	338	336	19	73	4.09	17,177	70,333	0.14524	10,215	0.4982	35,042	45,257		
28			November	714	705	338	336	(0.47)	17,295	$(8,066)$	0.14524	$(1,172)$	0.4982	$(4,019)$	$(5,190)$		
29			December	1,097	1,041	714	705	(2.64)	17,463	$(46,039)$	0.14524	$(6,687)$	0.4982	$(22,938)$	$(29,625)$		
30			Total	5,571	5,357	5,459	5,357	(15.29)	17,371	$(268,668)$		$(39,021)$		$(133,857)$	$(172,878)$		
31		Goodland			0.0018	(2)	0.0109	(2)									
32			January	1,068	1,096	1,112	1,088	(2.10)	2,315	$(4,872)$	0.14524	(708)	0.4982	$(2,428)$	$(3,135)$		
33			February	951	914	1,068	1,096	2.38	2,323	5,523	0.14524	802	0.4982	2,752	3,554		
34			March	843	758	951	914	(5.55)	2,313	$(12,826)$	0.14524	$(1,863)$	0.4982	$(6,390)$	$(8,253)$		
35			April	620	480	843	758	(11.75)	2,319	$(27,242)$	0.14524	$(3,957)$	0.4982	$(13,572)$	$(17,529)$		
36			May	204	211	620	480	(15.08)	2,323	$(35,039)$	0.14524	$(5,089)$	0.4982	$(17,457)$	$(22,547)$		
37			June	31	37	204	211	0.87	2,278	1,978	0.14524	287	0.4982	985	1,273		
38			July	7	4	31	37	0.60	2,278	1,362	0.14524	198	0.4982	679	877		
39			August	-	8	7	4	(0.18)	2,265	(413)	0.14524	(60)	0.4982	(206)	(266)		
40			September	47	112	-	8	2.04	2,264	4,609	0.14524	669	0.4982	2,296	2,966		
41			October	457	416	47	112	6.33	2,268	14,346	0.14524	2,084	0.4982	7,148	9,231		
42			November	762	779	457	416	(4.15)	2,292	$(9,510)$	0.14524	$(1,381)$	0.4982	$(4,738)$	$(6,119)$		
43			December	1,093	1,088	762	779	1.76	2,305	4,050	0.14524	588	0.4982	2,018	2,606		
44			Total	6,083	5,903	6,102	5,903	(24.85)	2,295	$(58,034)$		$(8,429)$		$(28,914)$	$(37,342)$		
45		Hutchinson			0.0010	(2)	0.0132	(2)									
46			January	1,027	1,076	954	1,035	11.16	666	7,435	0.14524	1,080	0.4982	3,704	4,784		
47			February	969	840	1,027	1,076	5.13	666	3,414	0.14524	496	0.4982	1,701	2,197		
48			March	827	646	969	840	(18.83)	667	$(12,563)$	0.14524	$(1,825)$	0.4982	$(6,259)$	$(8,084)$		
49			April	481	345	827	646	(25.22)	665	$(16,769)$	0.14524	$(2,436)$	0.4982	$(8,355)$	$(10,790)$		
50			May	156	109	481	345	(18.38)	669	$(12,297)$	0.14524	$(1,786)$	0.4982	$(6,127)$	$(7,913)$		
51			June	13	8	156	109	(6.24)	665	$(4,148)$	0.14524	(602)	0.4982	$(2,066)$	$(2,669)$		
52			July	3	1	13	8	(0.68)	665	(451)	0.14524	(66)	0.4982	(225)	(290)		
53			August	-	3	3	1	(0.23)	664	(154)	0.14524	(22)	0.4982	(77)	(99)		
54			September	13	58	-	3	0.86	664	569	0.14524	83	0.4982	283	366		
55			October	295	294	13	58	5.91	665	3,932	0.14524	571	0.4982	1,959	2,530		
56			November	692	662	295	294	(0.44)	668	(294)	0.14524	(43)	0.4982	(146)	(189)		
57			December	1,102	1,035	692	662	(4.64)	673	$(3,120)$	0.14524	(453)	0.4982	$(1,554)$	$(2,008)$		
58			Total	5,578	5,077	5,430	5,077	(51.60)	666	$(34,447)$		$(5,003)$		$(17,162)$	$(22,166)$		
59		Topeka (Law	rence)		0.0025	(2)	0.0092	(2)									
60			\|January	940	1,114	(2) 881	1,049	(2) 19.90	31,339	623,717	0.14524	90,589	0.4982	310,751	401,339		
61			February	849	878	940	1,114	16.80	31,357	526,940	0.14524	76,533	0.4982	262,534	339,067		
62			March	764	649	849	878	(0.22)	31,458	$(6,838)$	0.14524	(993)	0.4982	$(3,407)$	$(4,400)$		
63			April	442	332	764	649	(13.39)	31,488	$(421,757)$	0.14524	$(61,256)$	0.4982	$(210,129)$	$(271,385)$		
64			May	133	108	442	332	(10.79)	31,597	$(340,978)$	0.14524	$(49,524)$	0.4982	$(169,883)$	$(219,407)$		
65			June	5	11	133	108	(2.16)	31,725	$(68,475)$	0.14524	$(9,945)$	0.4982	$(34,116)$	$(44,061)$		
66			July	2	-	5	11	0.50	31,590	15,918	0.14524	2,312	0.4982	7,931	10,243		
67			August	-	3	2	-	(0.11)	32,491	$(3,548)$	0.14524	(515)	0.4982	$(1,768)$	$(2,283)$		
68			September	21	64	-	3	1.36	31,633	43,025	0.14524	6,249	0.4982	21,436	27,685		
69			October	325	317	21	64	3.77	31,280	117,952	0.14524	17,131	0.4982	58,767	75,898		
70			November	711	653	325	317	(2.20)	31,447	$(69,178)$	0.14524	$(10,047)$	0.4982	$(34,466)$	$(44,514)$		
71			December	1,126	1,049	711	653	(7.30)	31,660	$(231,035)$	0.14524	$(33,556)$	0.4982	$(115,107)$	$(148,663)$		
72			Total	5,318	5,178	5,073	5,178	6.17	31,589	185,744		26,977		92,542	119,520		
73		Liberal			0.0034	(2)	0.0087	(2)									
74			January	993	959	939	951	(0.11)	6,522	(728)	0.14524	(106)	0.4982	(363)	(469)		
75			February	857	774	993	959	(5.79)	6,535	$(37,865)$	0.14524	$(5,500)$	0.4982	$(18,865)$	$(24,365)$		
76			March	679	609	857	774	(9.63)	6,561	$(63,156)$	0.14524	$(9,173)$	0.4982	$(31,466)$	$(40,638)$		
77			April	513	325	679	609	(12.51)	6,535	$(81,769)$	0.14524	$(11,876)$	0.4982	$(40,739)$	$(52,616)$		
78			May	134	104	513	325	(17.42)	6,515	$(113,510)$	0.14524	$(16,486)$	0.4982	$(56,553)$	$(73,040)$		
79			June	7	11	134	104	(2.48)	6,485	$(16,088)$	0.14524	$(2,337)$	0.4982	$(8,016)$	$(10,352)$		
80			July	-	1	7	11	0.38	6,479	2,482	0.14524	360	0.4982	1,236	1,597		
81			August	-	2	-	1	0.16	6,451	1,002	0.14524	146	0.4982	499	645		
82			September	12	53	-	2	1.57	6,432	10,108	0.14524	1,468	0.4982	5,036	6,504		
83			October	294	273	12	53	2.86	6,449	18,452	0.14524	2,680	0.4982	9,193	11,873		
84			November	688	628	294	273	(3.88)	6,487	$(25,146)$	0.14524	$(3,652)$	0.4982	$(12,529)$	$(16,181)$		
85			December	1,062	951	688	628	(9.02)	6,507	$(58,670)$	0.14524	$(8,521)$	0.4982	$(29,231)$	$(37,752)$		
86			Total	5,239	4,690	5,116	4,690	(55.87)	6,497	$(364,889)$		$(52,997)$		$(181,797)$	$(234,793)$		

	[A]	[B]	[C]	[D]	[E]	[F]	[G]	[H]	[I]	[J]	[K]	[L]	[M]	[N]	[O]		
Line	Customer	Weather	2005-2006	HDD Current Month		HDD Previous Month		Per Customer Adjustment	Test Year \# of Cust.	Volumetric Adjustment	Margin		Cost of Gas		Total		
No.	Classification	Station	Month	Actual	Normal (1)	Actual	Normal (1)						Adjustment				
	Small Volume							therms/cust. (3)		$\begin{aligned} & \text { therms } \\ & {[H] X[1]} \end{aligned}$	\$/therms	$\begin{gathered} \$ \\ {[\mathrm{~J}] \times[\mathrm{K}]} \end{gathered}$			\$/therms (4)	$\begin{gathered} \$ \\ {[J] \times[M]} \end{gathered}$	$\begin{gathered} \$ \\ {[L]+[N]} \end{gathered}$
259		Topeka (Lawrence)															
260					0.0078	(2)	0.0336	(2)									
261			January	940	1,114	881	1,049	70.02	265	18,556	0.12500	2,320	0.5007	9,292	11,611		
262			February	849	878	940	1,114	60.70	211	12,808	0.12500	1,601	0.5007	6,413	8,014		
263			March	764	649	849	878	0.75	215	161	0.12500	20	0.5007	80	100		
264			April	442	332	764	649	(47.22)	212	$(10,011)$	0.12500	$(1,251)$	0.5007	$(5,013)$	$(6,264)$		
265			May	133	108	442	332	(38.90)	214	$(8,324)$	0.12500	$(1,040)$	0.5007	$(4,168)$	$(5,208)$		
266			June	5	11	133	108	(7.93)	209	$(1,657)$	0.12500	(207)	0.5007	(830)	$(1,037)$		
267			July	2	-	5	11	1.86	204	379	0.12500	47	0.5007	190	237		
268			August	-	3	2	-	(0.44)	205	(90)	0.12500	(11)	0.5007	(45)	(56)		
269			September	21	64	-	3	4.37	208	909	0.12500	114	0.5007	455	569		
270			October	325	317	21	64	13.81	207	2,860	0.12500	357	0.5007	1,432	1,789		
271			November	711	653	325	317	(7.22)	206	$(1,488)$	0.12500	(186)	0.5007	(745)	(931)		
272			December	1,126	1,049	711	653	(25.50)	204	$(5,202)$	0.12500	(650)	0.5007	$(2,605)$	$(3,255)$		
273			Total	5,318	5,178	5,073	5,178	24.31	213	8,902		1,113		4,458	5,570		
274		Liberal			0.0067	(2)	0.0316	(2)									
275			January	993	959	939	951	1.51	71	107	0.12500	13	0.5007	54	67		
276			February	857	774	993	959	(16.30)	62	$(1,011)$	0.12500	(126)	0.5007	(506)	(632)		
277			March	679	609	857	774	(30.91)	62	$(1,916)$	0.12500	(240)	0.5007	(960)	$(1,199)$		
278			April	513	325	679	609	(34.71)	62	$(2,152)$	0.12500	(269)	0.5007	$(1,078)$	$(1,347)$		
279			May	134	104	513	325	(61.39)	63	$(3,868)$	0.12500	(483)	0.5007	$(1,937)$	$(2,420)$		
280			June	7	11	134	104	(9.21)	63	(580)	0.12500	(73)	0.5007	(290)	(363)		
281			July	-	1	7	11	1.33	63	84	0.12500	10	0.5007	42	52		
282			August	-	2	-	1	0.45	63	28	0.12500	4	0.5007	14	18		
283			September	12	53	-	2	3.38	64	216	0.12500	27	0.5007	108	135		
284			October	294	273	12	53	11.54	64	739	0.12500	92	0.5007	370	462		
285			November	688	628	294	273	(10.66)	64	(682)	0.12500	(85)	0.5007	(341)	(427)		
286			December	1,062	951	688	628	(26.39)	65	$(1,716)$	0.12500	(214)	0.5007	(859)	$(1,073)$		
287			Total	5,239	4,690	5,116	4,690	(171.36)	64	$(10,750)$		$(1,344)$		$(5,383)$	$(6,727)$		
288		Wichita			0.0171	(2)	0.0393	(2)									
289			January	891	1,017	845	967	69.51	333	23,148	0.12500	2,893	0.5007	11,591	14,484		
290			February	816	780	891	1,017	43.37	276	11,970	0.12500	1,496	0.5007	5,994	7,490		
291			March	666	577	816	780	(29.38)	275	$(8,079)$	0.12500	$(1,010)$	0.5007	$(4,045)$	$(5,055)$		
292			April	421	291	666	577	(57.23)	278	$(15,909)$	0.12500	$(1,989)$	0.5007	$(7,966)$	$(9,954)$		
293			May	116	80	421	291	(57.26)	276	$(15,804)$	0.12500	$(1,975)$	0.5007	$(7,913)$	$(9,889)$		
294			June	3	6	116	80	(13.64)	269	$(3,669)$	0.12500	(459)	0.5007	$(1,837)$	$(2,295)$		
295			July	1	-	3	6	1.01	271	273	0.12500	34	0.5007	137	171		
296			August	-	1	1	-	(0.22)	271	(60)	0.12500	(8)	0.5007	(30)	(38)		
297			September	4	42	-	1	6.89	273	1,882	0.12500	235	0.5007	942	1,178		
298			October	248	243	4	42	14.08	272	3,830	0.12500	479	0.5007	1,918	2,397		
299			November	631	590	248	243	(8.98)	273	$(2,452)$	0.12500	(306)	0.5007	$(1,228)$	$(1,534)$		
300			December	1,070	967	631	590	(33.74)	274	$(9,244)$	0.12500	$(1,156)$	0.5007	$(4,629)$	$(5,784)$		
301			Total	4,867	4,594	4,642	4,594	(65.57)	278	$(14,113)$		$(1,764)$		$(7,066)$	$(8,831)$		
302	Large Volume	Firm (KS275, KS276, KS277) (5)															
303					0.0110	(2)	0.0319	(2)									
304			January	989	1,018	(2) 946	1,000	20.40	2	41	0.05900	2	0.5026	21	23		
305			February	863	815	989	1,018	3.97	2	8	0.05900	0	0.5026	4	4		
306			March	698	640	863	815	(21.67)	2	(43)	0.05900	(3)	0.5026	(22)	(24)		
307			April	486	352	698	640	(33.21)	2	(66)	0.05900	(4)	0.5026	(33)	(37)		
308			May	138	115	486	352	(45.23)	2	(90)	0.05900	(5)	0.5026	(45)	(51)		
309			June	12	13	138	115	(7.22)	2	(14)	0.05900	(1)	0.5026	(7)	(8)		
310			July	-	1	12	13	0.43	2	1	0.05900	0	0.5026	0	0		
311			August	-	3	-	1	0.65	2	1	0.05900	0	0.5026	1	1		
312			September	16	61	-	3	5.90	2	12	0.05900	1	0.5026	6	7		
313			October	324	291	16	61	10.71	2	21	0.05900	1	0.5026	11	12		
314			November	688	658	324	291	(13.81)	2	(28)	0.05900	(2)	0.5026	(14)	(16)		
315			December	1,080	1,000	688	658	(18.35)	2	(37)	0.05900	(2)	0.5026	(18)	(21)		
316			Total	5,294	4,967	5,160	4,967	(97.45)	2	(195)		(11)		(98)	(109)		
317		Garden City			0.0138	(2)	0.0275	(2)									
318			January	1,059	1,073	(2) 985	1,041	17.32	9	156	0.05900	9	0.5026	78	88		
319			February	887	872	1,059	1,073	1.77	9	16	0.05900	1	0.5026	8	9		
320			March	734	687	887	872	(10.63)	9	(96)	0.05900	(6)	0.5026	(48)	(54)		
321			April	541	399	734	687	(32.56)	9	(293)	0.05900	(17)	0.5026	(147)	(165)		
322			May	167	146	541	399	(41.90)	7	(293)	0.05900	(17)	0.5026	(147)	(165)		
323			June	15	20	167	146	(5.07)	8	(41)	0.05900	(2)	0.5026	(20)	(23)		
324			July	-	1	15	20	1.51	8	12	0.05900	1	0.5026	6	7		
325			August	-	4	-	1	0.83	8	7	0.05900	0	0.5026	3	4		
326			September	19	73	-	4	8.57	8	69	0.05900	4	0.5026	34	39		
327			October	338	336	19	73	14.55	8	116	0.05900	7	0.5026	59	65		
328			November	714	705	338	336	(1.80)	7	(13)	0.05900	(1)	0.5026	(6)	(7)		
329			December	1,097	1,041	714	705	(10.22)	8	(82)	0.05900	(5)	0.5026	(41)	(46)		
330			Total	5,571	5,357	5,459	5,357	(57.63)	8	(441)		(26)		(222)	(248)		
331		Hutchinson			-	(2)	0.0708	(2)									
332			January	1,068	1,096	(2) 1,112	1,088	(16.98)		-	0.05900	-	0.5026	-	-		
333			February	951	914	1,068	1,096	19.81		-	0.05900	-	0.5026	-	-		
334			March	843	758	951	914	(26.18)		-	0.05900	-	0.5026	-	-		
335			April	620	480	843	758	(60.15)		-	0.05900	-	0.5026	-	-		
336			May	204	211	620	480	(99.06)		-	0.05900	-	0.5026	-	-		
337			June	31	37	204	211	4.95		-	0.05900	-	0.5026	-	-		
338			July	7	4	31	37	4.25		-	0.05900	-	0.5026	-	-		
339			August	-	8	7	4	(2.12)		-	0.05900	-	0.5026	-	-		
340			September	47	112	-	8	5.66		-	0.05900	-	0.5026	-	-		
341			October	457	416	47	112	45.99		-	0.05900	-	0.5026	-	-		
342			November	762	779	457	416	(29.01)		-	0.05900	-	0.5026	-	-		
343			December	1,093	1,088	762	779	12.03	1	12	0.05900	1	0.5026	6	7		
344			Total	6,083	5,903	6,102	5,903	(140.81)	1	12		1		6	7		

Notes (1) 1981-2010 NOAA Normal
(2) Exhibit_(TJS-3)
(3) [(Current Month Normal HDD - Current Month Actual HDD) x Current Month HDD Statistic + (Previous Month Normal HDD - Previous Month Actual HDD) * Previous Month HDD Statistic $]$ * 10
(4) Current rates effective $1 / 1 / 2013$
(5) There were no Large Volume Firm customers in Goodland during the test year Irrigation Stations

Month	Rainfall - inches						Average Temperature					
	Goodland	Dodge City	Garden City	Liberal	Hutchinson	Wichita	Goodland	Dodge City	Garden City	Liberal	Hutchinson	Wichita
Total Actual												
2006	24.81	21.13	22.79	23.87	23.10	29.36	52.7	57.5	55.8	58.0	57.3	59.5
2007	15.10	19.12	17.59	14.21	37.76	37.97	51.0	55.6	53.9	56.1	55.1	57.5
2008	20.42	18.29	17.31	20.74	37.99	53.82	50.9	55.2	53.6	55.8	53.5	56.1
2009	22.66	25.52	21.68	18.81	33.60	37.53	50.2	54.5	53.1	55.5	53.9	56.4
2010	19.46	25.32	16.19	17.12	35.46	28.17	51.9	55.8	55.0	57.1	56.2	58.3
2011	19.30	10.30	12.12	11.52	17.79	26.06	51.4	56.4	54.3	57.3	57.0	58.5
2012	9.58	18.08	12.14	11.65	18.12	25.01	54.7	58.1	56.9		59.0	61.5
2013	16.72	20.72	17.41	10.24	42.97	40.45	51.2	54.6	53.7	54.9	54.7	56.2
NOAA Normal - 1981-2010												
January	0.38	0.58	0.47	0.45	0.79	0.83	29.6	32.2	30.4	34.1	30.3	32.2
February	0.49	0.68	0.52	0.65	1.25	1.18	32.3	35.9	33.9	37.3	35.0	37.2
March	1.07	1.59	1.23	1.34	2.58	2.69	40.5	44.4	42.9	45.4	44.2	46.5
April	1.59	1.82	1.74	1.69	2.70	2.59	49.2	53.9	52.1	54.7	53.9	56.1
May	2.95	2.85	3.00	2.69	4.68	4.57	59.4	64.2	62.7	64.7	64.2	66.0
June	3.25	3.24	3.10	3.01	4.57	5.20	69.7	73.9	72.6	74.1	73.8	75.8
July	3.47	3.08	2.80	2.97	4.09	3.32	75.7	79.6	77.9	79.3	78.9	81.1
August	2.70	2.75	2.51	2.23	3.36	3.71	73.7	78.1	76.2	78.2	77.4	80.0
September	1.22	1.67	1.42	1.83	2.66	3.14	64.6	69.2	67.6	69.6	68.7	71.0
October	1.37	1.74	1.22	1.91	2.44	2.78	51.9	56.6	54.7	57.0	56.4	58.3
November	0.71	0.76	0.54	0.78	1.32	1.43	39.0	43.1	41.5	44.1	43.0	45.4
December	0.46	0.84	0.60	0.70	1.17	1.20	29.9	32.8	31.4	34.3	31.6	33.8
Total	19.66	21.60	19.15	20.25	31.61	32.64	51.3	55.3	53.7	56.1	54.8	57.0
2013												
Difference from Normal												
Amount	-2.94	-0.88	-1.74	-10.01	11.36	7.81	-0.1	-0.7	0.0	-1.2	-0.1	-0.8
Percentage	-15.0\%	-4.1\%	-9.1\%	-49.4\%	35.9\%	23.9\%	-0.2\%	-1.3\%	0.0\%	-2.1\%	-0.2\%	-1.4\%
April-September Difference												
Amount	-2.22	-0.45	-1.05	-6.13	12.21	8.54	0.8	0.1	0.9	-0.1	0.4	-0.5
Percentage	-13.7\%	-2.6\%	-6.6\%	-38.9\%	49.6\%	33.9\%	1.2\%	0.1\%	1.4\%	-0.1\%	0.6\%	-0.7\%
2006-13 Average	18.51	19.81	17.15	16.02	30.85	34.80	51.75	55.96	54.54	56.39	55.84	58.00
Relative to Normal	-5.9\%	-8.3\%	-10.4\%	-20.9\%	-2.4\%	6.6\%	0.9\%	1.2\%	1.6\%	0.5\%	1.9\%	1.8\%

Note: Data for 2012 and prior taken from Climatological Data - Kansas - Annual Summary. 2013 data from NOAA Online Weather Data (NOWDATA).

Black Hills Energy - KGO
Irrigation Weather Normalization Adjustment
Regression Analyses Statistical Results

The X Variables in order are:
1 - Current Month's Rainfall
2 - Prior Month's Rainfall
3 - Current Month's Average Temperature
4 - Prior Month's Average Temperature
Goodland
6/2006 through 12/2013
SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.876763301
R Square	0.768713885
Adjusted R Square	0.757956392
Standard Error	75.17677374
Observations	91

ANOVA	df	SS	MS	F	Significance F	
	4	1615403.37	403850.8424	71.45845557	$1.55099 \mathrm{E}-26$	
Regression	86	486033.0687	5651.54731			
Residual	90	2101436.438				
Total						

	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%
Intercept	-307.7825236	27.06813208	-11.37065989	$8.02 \mathrm{E}-19$	-361.5921893	-253.972858	-361.5921893	-253.972858
X Variable 1	-7.041802612	6.60418399	-1.066263845	0.28928867	-20.17048587	6.086880645	-20.17048587	6.086880645
X Variable 2	-23.43601746	6.518575945	-3.59526646	0.000539743	-36.39451756	-10.47751737	-36.39451756	-10.47751737
X Variable 3	5.699134269	0.873556178	6.524061546	$4.52265 \mathrm{E}-09$	3.962562061	7.435706476	3.962562061	7.435706476
X Variable 4	3.440037498	0.876405757	3.925165335	0.000174151	1.697800514	5.182274481	1.697800514	5.182274481

High Correlation
Negative Correlation with Rainfall
Positive Correlation with Temperature

Dodge City

6/2006 through 12/2013
SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.859455338
R Square	0.738663478
Adjusted R Square	0.726508291
Standard Error	80.41977169
Observations	91

ANOVA

	df	SS	MS	F	Significance F			
Regression	4	1572065.519	393016.3796	60.76940429	$2.8509 \mathrm{E}-24$			
Residual	86	556191.2124	6467.339679					
Total	90	2128256.731						
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%
Intercept	-285.6813609	29.98213561	-9.528385988	$4.1335 \mathrm{E}-15$	-345.2838738	-226.0788479	-345.2838738	-226.0788479
X Variable 1	-6.441875237	5.85876138	-1.099528521	0.274606048	-18.08870739	5.204956916	-18.08870739	5.204956916
X Variable 2	-3.103026632	5.836551292	-0.531654136	0.596336226	-14.70570659	8.499653329	-14.70570659	8.499653329
X Variable 3	7.208387748	0.913791107	7.888441566	8.8883E-12	5.39183115	9.024944346	5.39183115	9.024944346
X Variable 4	0.714265585	0.902140741	0.791745182	0.430687667	-1.079130853	2.507662024	-1.079130853	2.507662024

High Correlation
Negative Correlation with Rainfall
Positive Correlation with Temperature

Black Hills Energy - KGO
Irrigation Weather Normalization Adjustment
Regression Analyses Statistical Results

The X Variables in order are:
1 - Current Month's Rainfall
2 - Prior Month's Rainfall
3 - Current Month's Average Temperature
4 - Prior Month's Average Temperature

Garden City

6/2006 through 12/2013
SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.86724611
R Square	0.752115816
Adjusted R Square	0.740586319
Standard Error	142.1574756
Observations	91

ANOVA

	$d f$		SS	MS	F	Significance F
Regression	4	5273194.137	1318298.534	65.23405322	$2.99004 \mathrm{E}-25$	
Residual	86	1737952.317	20208.74787			
Total	90	7011146.453				

	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%
Intercept	-475.6606041	50.08597006	-9.49688313	$4.79079 \mathrm{E}-15$	-575.2282172	-376.092991	-575.2282172	-376.092991
X Variable 1	-9.358603959	13.1810191	-0.710006099	0.479621158	-35.5616027	16.84439478	-35.5616027	16.84439478
X Variable 2	-27.19014791	13.33459791	-2.039067702	0.044513653	-53.69845122	-0.681844606	-53.69845122	-0.681844606
X Variable 3	13.92770508	1.614908244	8.624455991	$2.86134 \mathrm{E}-13$	10.71737374	17.13803642	10.71737374	17.13803642
X Variable 4	0.465102943	1.541541461	0.301712899	0.763599316	-2.599380057	3.529585943	-2.599380057	3.529585943

High Correlation
Negative Correlation with Rainfall
Positive Correlation with Temperature

```
l

```

Black Hills Energy - Kansas
Irrigation Weather Normalization Adjustment
Exhibit TJS-7
Page 2 of 3

```


-
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{[A]} & [B] & [C] & [D] & [E] & [F] & [G] & [H] & [1] & [J] & [K] & \multicolumn{2}{|l|}{[L] [M]} & [ N\(]\) & \multicolumn{2}{|l|}{[0] [P]} & \multicolumn{2}{|l|}{[Q] [R]} & [S] \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Line } \\
\text { No. }
\end{gathered}
\]} & \multirow[t]{2}{*}{Weather Station} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Rate } \\
\text { Schedule }
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{aligned}
& 2013 \\
& \text { Month } \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{Rainfall - Inches Current Month} & \multicolumn{2}{|l|}{Rainfall - Inches Previous Month} & \multicolumn{2}{|l|}{Average Temperature Current Month} & \multicolumn{2}{|l|}{Average Temperature
Previous Month Previous Month} & \multirow[t]{2}{*}{Per Customer
Adjustment} & \multirow[t]{2}{*}{Test Year \# of Cust.} & \multirow[b]{2}{*}{Volumetric Adjustment} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Margin}} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Cost of Gas}} & \multirow[t]{2}{*}{Total Adjustment} \\
\hline & & & & Actual & Normal (1) & & & & & & & & \\
\hline & & & & & & & & & & & & \begin{tabular}{l}
therms/cust. \\
(3)
\end{tabular} & & therms [L]X[M] & \begin{tabular}{l}
\$/therms \\
(4)
\end{tabular} & \[
\stackrel{\$}{\$ \mathrm{~N}][\mathrm{O}]}
\] & \begin{tabular}{l}
\$/therms \\
(4)
\end{tabular} & \[
\begin{gathered}
\$ \\
{[N][Q]}
\end{gathered}
\] & \[
\begin{gathered}
\$ \\
{[P]+[R]}
\end{gathered}
\] \\
\hline
\end{tabular}
\begin{tabular}{lll}
108 & KSO3U - Transportation & January \\
February \\
109 & March \\
110 & & April \\
111 & May \\
112 & & June \\
113 & July \\
114 & & August \\
115 & September \\
116 & October \\
117 & & November \\
118 & December \\
119 & Total
\end{tabular}
\begin{tabular}{cccc}
0.60 & 0.47 & 0.73 & 0.60 \\
1.54 & 0.52 & 0.60 & 0.47 \\
0.13 & 1.23 & 1.54 & 0.52 \\
0.28 & 1.74 & 0.13 & 1.23 \\
1.25 & 3.00 & 0.28 & 1.74 \\
1.84 & 3.10 & 1.25 & 3.00 \\
2.23 & 2.80 & 1.84 & 3.10 \\
6.09 & 2.51 & 2.23 & 2.80 \\
1.83 & 1.42 & 6.09 & 2.51 \\
0.88 & 1.22 & 1.83 & 1.42 \\
0.74 & 0.54 & 0.88 & 1.22 \\
0.00 & 0.60 & 0.74 & 0.54 \\
\hline 17.41 & 19.15 & 18.14 & 19.15
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 30.6 & 30.4 & 33.0 & 31.4 & & 40 & 0 \\
\hline 33.1 & 33.9 & 30.6 & 30.4 & & 36 & 0 \\
\hline 41.1 & 42.9 & 33.1 & 33.9 & & 36 & 0 \\
\hline 46.8 & 52.1 & 41.1 & 42.9 & 311 & 37 & 11,500 \\
\hline 63.2 & 62.7 & 46.8 & 52.1 & (606) & 36 & (21,807) \\
\hline 76.8 & 72.6 & 63.2 & 62.7 & \((1,181)\) & 36 & (42,517) \\
\hline 79.0 & 77.9 & 76.8 & 72.6 & (569) & 36 & (20,472) \\
\hline 76.2 & 76.2 & 79.0 & 77.9 & 175 & 36 & 6,298 \\
\hline 72.4 & 67.6 & 76.2 & 76.2 & 343 & 36 & 12,357 \\
\hline 54.4 & 54.7 & 72.4 & 67.6 & & 36 & 0 \\
\hline 41.0 & 41.5 & 54.4 & 54.7 & & 36 & 0 \\
\hline \multirow[t]{2}{*}{29.4} & 31.4 & 41.0 & 41.5 & & 36 & 0 \\
\hline & & & & & 36 & (54,642) \\
\hline 30.6 & 30.4 & 33.0 & 31.4 & & 13 & 0 \\
\hline 33.1 & 33.9 & 30.6 & 30.4 & & 7 & 0 \\
\hline 41.1 & 42.9 & 33.1 & 33.9 & & 13 & 0 \\
\hline 46.8 & 52.1 & 41.1 & 42.9 & 311 & 13 & 4,041 \\
\hline 63.2 & 62.7 & 46.8 & 52.1 & (606) & 12 & (7,269 \\
\hline 76.8 & 72.6 & 63.2 & 62.7 & \((1,181)\) & 13 & (15,353) \\
\hline 79.0 & 77.9 & 76.8 & 72.6 & (569) & 13 & (7,393) \\
\hline 76.2 & 76.2 & 79.0 & 77.9 & 175 & 13 & 2,274 \\
\hline 72.4 & 67.6 & 76.2 & 76.2 & 343 & 13 & 4,462 \\
\hline 54.4 & 54.7 & 72.4 & 67.6 & & 12 & 0 \\
\hline 41.0 & 41.5 & 54.4 & 54.7 & & 12 & 0 \\
\hline \multirow[t]{2}{*}{29.4} & 31.4 & 41.0 & 41.5 & & 12 & 0 \\
\hline & & & & & 12 & (19,238) \\
\hline 30.6 & 30.4 & 33.0 & 31.4 & & 25 & 0 \\
\hline 33.1 & 33.9 & 30.6 & 30.4 & & 22 & 0 \\
\hline 41.1 & 42.9 & 33.1 & 33.9 & & 22 & 0 \\
\hline 46.8 & 52.1 & 41.1 & 42.9 & 311 & 21 & 6,527 \\
\hline 63.2 & 62.7 & 46.8 & 52.1 & (606) & 20 & (12,115 \\
\hline 76.8 & 72.6 & 63.2 & 62.7 & \((1,181)\) & 21 & (24,802 \\
\hline 79.0 & 77.9 & 76.8 & 72.6 & (569) & 19 & (10,805 \\
\hline 76.2 & 76.2 & 79.0 & 77.9 & 175 & 18 & 3,149 \\
\hline 72.4 & 67.6 & 76.2 & 76.2 & 343 & 18 & 6,178 \\
\hline 54.4 & 54.7 & 72.4 & 67.6 & & 18 & 0 \\
\hline 41.0 & 41.5 & 54.4 & 54.7 & & 18 & 0 \\
\hline \multirow[t]{2}{*}{29.4} & 31.4 & 41.0 & 41.5 & & 18 & 0 \\
\hline & & & & & 20 & (31,867) \\
\hline
\end{tabular} \begin{tabular}{rr}
0.0510 & 0 \\
0.0510 & 0 \\
0.0510 & 0 \\
0.0510 & 587 \\
0.0510 & \((1,112)\) \\
0.0510 & \((2,168)\) \\
0.0510 & \((1,044)\) \\
0.0510 & 321 \\
0.0510 & 630 \\
0.0510 & 0 \\
0.0510 & 0 \\
0.0510 & 0 \\
\hline
\end{tabular} \begin{tabular}{lr}
0.0510 & 0 \\
0.0510 & 0 \\
0.0510 & 0 \\
0.0510 & 206 \\
0.0510 & \((371)\) \\
0.0510 & \((783)\) \\
0.0510 & \((377)\) \\
0.0510 & 116 \\
0.0510 & 228 \\
0.0510 & 0 \\
0.0510 & 0 \\
0.0510 & 0 \\
\hline
\end{tabular}
\begin{tabular}{lr}
0.0510 & 0 \\
0.0510 & 0 \\
0.0510 & 0 \\
0.0510 & 333 \\
0.0510 & \((618)\) \\
0.0510 & \((1,255)\) \\
0.0510 & \((551)\) \\
0.0510 & 161 \\
0.0510 & 315 \\
0.0510 & 0 \\
0.0510 & 0 \\
0.0510 & 0 \\
\hline
\end{tabular} \(\begin{array}{r}0 \\ 0 \\ 0 \\ 587 \\ (1,12) \\ (2,168) \\ (1,044) \\ 321 \\ 630 \\ 0 \\ 0 \\ 0 \\ \hline(2,787)\end{array}\)

KS08U - Transportation
\begin{tabular}{lcccc} 
January & 0.60 & 0.47 & 0.73 & 0.60 \\
February & 1.54 & 0.52 & 0.60 & 0.47 \\
March & 0.13 & 1.23 & 1.54 & 0.52 \\
April & 0.28 & 1.74 & 0.13 & 1.23 \\
May & 1.25 & 3.00 & 0.28 & 1.74 \\
Mune & 1.84 & 3.10 & 1.25 & 3.00 \\
July & 2.23 & 2.80 & 1.84 & 3.10 \\
August & 6.09 & 2.51 & 2.23 & 2.80 \\
September & 1.83 & 1.42 & 6.09 & 2.51 \\
October & 0.88 & 1.22 & 1.83 & 1.42 \\
Noverber & 0.74 & 0.54 & 0.88 & 1.22 \\
December & 0.00 & 0.60 & 0.74 & 0.54 \\
\cline { 2 - 5 } Total & 17.41 & 19.15 & 18.14 & 19.54 \\
January & 0.60 & 0.47 & 0.73 & 0.60 \\
February & 1.54 & 0.52 & 0.60 & 0.47 \\
March & 0.13 & 1.23 & 1.54 & 0.52 \\
April & 0.28 & 1.74 & 0.13 & 1.23 \\
May & 1.25 & 3.00 & 0.28 & 1.74 \\
June & 1.84 & 3.10 & 1.25 & 3.00 \\
July & 2.23 & 2.80 & 1.84 & 3.10 \\
August & 6.09 & 2.51 & 2.23 & 2.80 \\
September & 1.83 & 1.42 & 6.09 & 2.51 \\
October & 0.88 & 1.22 & 1.83 & 1.42 \\
November & 0.74 & 0.54 & 0.88 & 1.22 \\
December & 0.00 & 0.60 & 0.74 & 0.54 \\
Total & 17.41 & 19.15 & 18.14 & 19.15 \\
& & & &
\end{tabular}

Sales
Transporta
Transportation
Total
Not Adjusted (5)
Hutchinso
Liberal
Wibhita
Total
\(\qquad\) \(\begin{array}{r}(85,354) \\ \quad(33,089) \\ \hline(118,442)\end{array}\)


57 (1) 1981-2010 NOAA Normals
158 (2) Exhibit TJS-6
59 (3) [(Current Month Normal Rainfall - Current Month Actual Rainfall) x Current Month Rainfall Statistic + (Previous Month Normal Rainfall - Previous Month Actual Rainfall) * Previous Month Rainfall Statistic+ 161 (4) Current Month Normal Temperatue effective 1/1/2013
162 (5) No meaningful statistical analyses for these location

Black Hills Energy - Kansas Historical Irrigation Average Use Per Customer



32 (1) See Exhibit TJS-12, Table 1, Lines 21-24
33 (2) See Exhibit TJS-13 Line 17 times 12
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & [A] & [B] & [C] & [D] & [E] & [F] & [G] & [H] & [1] & [J] & [K] & [L] & [M] & [ N\(]\) & [0] & [P] \\
\hline & \multicolumn{2}{|l|}{Rate Schedule} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Tariff } \\
\text { Number }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Total } \\
\text { Number of } \\
\text { Bills }
\end{gathered}
\]} & \multirow[t]{2}{*}{Total Number of Customers} & \multirow[b]{2}{*}{Volumes} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Winter Period } \\
\text { Volumes } \\
\text { (Nov-Mar) }
\end{array}
\]} & \multicolumn{6}{|c|}{Existing Rates} & \multirow[t]{2}{*}{Per Books GSRS Revenues} & \multirow[t]{2}{*}{Per Books AVTS Revenues} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Total } \\
\text { Revenues }
\end{gathered}
\]} \\
\hline Line No. & Customer Class & \[
\begin{array}{|c|}
\hline \text { Rate } \\
\text { Number } \\
\hline
\end{array}
\] & & & & & & \multirow[b]{2}{*}{Margin} & Customer
Charge & Total Margin Revenues & \[
\begin{array}{|r|r|}
\hline \text { Gas } \\
\hline \text { Unit Cost (1)| } \\
\hline
\end{array}
\] & \(\frac{\text { Cost }}{\text { Revenues }}\) & \[
\begin{gathered}
\text { Total } \\
\text { Revenues }
\end{gathered}
\] & & & \\
\hline & & & & & & therms & & & \$/bill & \$ & \$/therm & \$ & \$ & \$ & \$ & \\
\hline \multicolumn{17}{|c|}{1 Sales} \\
\hline & ntial & kS001 & RS-1 & 1,186,548 & 98,879 & 71,637,399 & 50,386,759 & 0.14524 & 16.00 & 29,389,384 & 0.49822 & 35,691,456 & 65,080,839 & 1,693,992 & 1,106,967 & 67,881,799 \\
\hline \multicolumn{17}{|c|}{3 Small Commercial} \\
\hline 4 & & Ks050 & SC-1 & 104,012 & 8,668 & 13,020,585 & 9,623,519 & 0.14524 & 22.75 & 4,257,383 & 0.49612 & 6,459,777 & 10,717,160 & 296,258 & 199,402 & 11,212,820 \\
\hline 5 & & kS052 & sc-1 & 24 & 2 & 3,800 & 2,700 & 0.14524 & 22.75 & 1,098 & 0.49612 & 1,885 & 2,983 & 68 & 56 & 3,107 \\
\hline 6 & & KS055 & SC-1 & 12 & 1 & 1,090 & 850 & 0.14524 & 22.75 & 431 & 0.49612 & 541 & 972 & 68 & 15 & 1,055 \\
\hline 7 & Total & & & 104,048 & 8,671 & 13,025,475 & \(9,627,069\) & & & 4,258,912 & & 6,462,203 & 10,721,115 & 296,394 & 199,473 & 11,216,982 \\
\hline \multicolumn{17}{|c|}{8 Small Volume Firm} \\
\hline 9 & & KS110 & SVF & 10,836 & 903 & 11,877,865 & 7,785,853 & 0.12500 & 40.00 & 1,918,173 & 0.50072 & 5,947,474 & 7,865,647 & 116,804 & 185,564 & 8,168,015 \\
\hline 10 & & kS111 & SvF & 36 & 3 & 8,630 & 6,460 & 0.12500 & 40.00 & 2.519 & 0.50072 & 4,321 & 6,840 & 386 & 125 & 7,351 \\
\hline 11 & Total & & & 10,872 & 906 & 11,886,495 & 7,792,313 & & & 1,920,692 & & 5,951,796 & 7,872,487 & 117,190 & 185,689 & 8,175,367 \\
\hline \multicolumn{17}{|c|}{12 Small Volume Interruptible} \\
\hline 13 & & kS125 & svi & 1,063 & 89 & 920,940 & 564,454 & 0.12500 & 40.00 & 157,638 & 0.37519 & 345,523 & 503,161 & 11,496 & 14,720 & 529,377 \\
\hline 14 & & kS126 & svi & 12 & 1 & 21,610 & 15,240 & 0.12500 & 40.00 & 3,181 & 0.37519 & 8,108 & 11,289 & 257 & 316 & 11,863 \\
\hline 15 & Total & & & 1,075 & 90 & 942,550 & 579,694 & & & 160,819 & & 353,631 & 514,450 & 11,753 & 15,036 & 541,239 \\
\hline \multicolumn{17}{|c|}{16 Large Volume Firm} \\
\hline 17 & & KS275 & LVF & 243 & 20 & 2,030,308 & 1,258,941 & 0.05900 & 256.00 & 181,996 & 0.50263 & 1,020,498 & 1,202,494 & 4,173 & 32,030 & 1,238,697 \\
\hline 18 & & KS276 & LVF & 4 & , & 29,720 & 20,490 & 0.05900 & 256.00 & 2,777 & 0.50263 & 14,938 & 17,716 & 76 & 528 & 18,320 \\
\hline 19 & & KS277 & LVF & 24 & 2 & 285,680 & 192,830 & 0.05900 & 256.00 & 22,999 & 0.50263 & 143,592 & 166,591 & 415 & 4,266 & 171,272 \\
\hline 20 & Total & & & 271 & 23 & 2,345,708 & 1,472,261 & & & 207,773 & & 1,179,028 & 1,386,801 & 4,664 & 36,825 & 1,428,289 \\
\hline \multicolumn{17}{|c|}{21 Large Volume Interruptible} \\
\hline 22 & & KS250 & LVI & 122 & 10 & 1,464,004 & 449,313 & 0.05900 & 256.00 & 117,608 & 0.38896 & 569,444 & 687,052 & 2,213 & 25,187 & 714,452 \\
\hline \({ }^{23}\) & & KS251 & LVI & 16 & 1 & 151,070 & 132,850 & 0.05900 & 256.00 & 13,009 & 0.38896 & 58,761 & 71,770 & 358 & 2,645 & 74,773 \\
\hline 24 & Total & & & 138 & 12 & 1,615,074 & 582,163 & & & 130,617 & & 628,205 & 758,822 & 2,570 & 27,832 & 789,224 \\
\hline \multicolumn{17}{|c|}{25 Irigation (Interruptible)} \\
\hline 26 & & KS300 & IR & 15,421 & 1,285 & 31,695,201 & 2,069,114 & 0.05100 & 25.00 & 2,001,980 & 0.40188 & 12,737,527 & 14,739,507 & & & 14,739,507 \\
\hline 27 & & KS301 & IR & 69 & 6 & 517,500 & 30,660 & 0.05100 & 25.00 & 28,118 & 0.40188 & 207,971 & 236,088 & & & 236,088 \\
\hline 28 & Total & & & 15,490 & 1,291 & 32,212,701 & 2,099,774 & & & 2,030,098 & & 12,945,497 & 14,975,595 & & & 14,975,595 \\
\hline \multicolumn{17}{|c|}{29 Wholesale} \\
\hline 30 & & KS350 & wGs & 60 & 5 & 505,295 & 362,668 & 0.05900 & 256.00 & 45,172 & 0.49820 & 251,736 & 296,908 & & & 296,908 \\
\hline 31 & & KS351 & WGs & 24 & 2 & 660,020 & 437,430 & 0.05900 & 256.00 & 45,085 & 0.49730 & 328,230 & 373,315 & & & 373,315 \\
\hline 32 & Total & & & 84 & 7 & 1,165,315 & 800,098 & & & 90,258 & & 579,966 & 670,223 & & & 670,223 \\
\hline \multicolumn{4}{|c|}{33 Total Sales} & 1,318,526 & 109,877 & 134,830,717 & 73,340,131 & & & 38,188,552 & & 63,791,781 & 101,980,333 & 2,126,563 & 1,571,822 & 105,678,718 \\
\hline & erage Actual & Cost of Gas & for Year En & nded December & , 2013 & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Line No.} & \multicolumn{2}{|l|}{Rate Schedule} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Tariff } \\
\text { Number }
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Total } \\
\text { Number of } \\
\text { Bills }
\end{gathered}
\]} & \multirow[t]{3}{*}{Total Number of Customers} & \multirow{3}{*}{Volumes} & \multirow[t]{3}{*}{\begin{tabular}{l}
Winter Period \\
Volumes (Nov-Mar)
\end{tabular}} & \multicolumn{6}{|c|}{Existing Rates} & \multirow[t]{3}{*}{Per Books GSRS Revenues} & \multirow[t]{3}{*}{Per Books AVTS Revenues} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Total } \\
\text { Revenues }
\end{gathered}
\]} \\
\hline & Customer & Rate & & & & & & & Customer & Total Margin & Gas & & Total & & & \\
\hline & Class & Number & & & & & & Margin & Charge & Revenues & Unit Cost (1) & Revenues & Revenues & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|l|}{\multirow[t]{2}{*}{\({ }^{35}\) Transportation}} \\
\hline & mmercial & & & & & & & & & & & & & & \\
\hline 37 & & KS63U & scts-A & 552 & 46 & 59,841 & 45,844 & 0.14524 & 22.75 & 21,249 & 0 & 21,249 & 1,578 & 891 & 23,718 \\
\hline 38 & & KS64U & scts-A & 12 & 1 & 2,953 & 2,580 & 0.14524 & 22.75 & 702 & 0 & 702 & 35 & 46 & 782 \\
\hline 39 & & KS65U & scts-A & 456 & 38 & 51,101 & 36,959 & 0.14524 & 22.75 & 17,796 & 0 & 17,796 & 1,301 & 778 & 19,875 \\
\hline 40 & & ks66U & scts-A & 84 & 7 & 13,697 & 9,950 & 0.14524 & 22.75 & 3,900 & 0 & 3,900 & 239 & 205 & 4,344 \\
\hline 41 & & Ks67U & scts-A & 52 & 4 & 14,396 & 9,828 & 0.14524 & 22.75 & 3,274 & 0 & 3,274 & 152 & 225 & 3,651 \\
\hline 42 & & KS68U & scts-A & 48 & 4 & 6,944 & 5,591 & 0.14524 & 22.75 & 2,101 & 0 & 2,101 & 138 & 105 & 2,344 \\
\hline 43 & & Ks69U & ScTs-A & 242 & 20 & 83,386 & 56,513 & 0.14524 & 22.75 & 17,616 & 0 & 17,616 & 689 & 1,310 & 19,616 \\
\hline 44 & & kS27U & SCTS-A & & & & & 0.14524 & 22.75 & 0 & 0 & 0 & & & 0 \\
\hline 45 & Total & & & \({ }^{1,446}\) & \({ }^{121}\) & 232,318 & 167,265 & & & 66,638 & 0 & 66,638 & 4,132 & 3,561 & 74,331 \\
\hline \multicolumn{16}{|l|}{46 Small Volume} \\
\hline 47 & & ks60U & svis-A & 1,065 & 89 & 800,343 & 513,870 & 0.12500 & 40.00 & 142,643 & 0 & 142,643 & 11,613 & 12,387 & 166,643 \\
\hline 48 & & kS12Z & svts-A & 155 & 13 & 268,463 & 204,387 & 0.12500 & 40.00 & 39,758 & 0 & 39,758 & 1,706 & 4,203 & 45,667 \\
\hline 49 & & kS07U & SvTS-A & 1,063 & 89 & 1,707,005 & 1,147,201 & 0.12500 & 40.00 & 255,896 & 0 & 255,896 & 11,610 & 26,871 & 294,376 \\
\hline 50 & & kS96U & svts-A & 12 & 1 & 10,681 & 9,335 & 0.12500 & 40.00 & 1,815 & 0 & 1,815 & 133 & 164 & 2,112 \\
\hline 51 & & Ks94U & svts-A & 408 & 34 & 396,210 & 205,062 & 0.12500 & 40.00 & 65,846 & 0 & 65,846 & 4,402 & 6,304 & 76,552 \\
\hline 52 & & ksogu & svts-A & 1,072 & 89 & 1,263,318 & 810,944 & 0.12500 & 40.00 & 200,795 & 0 & 200,795 & 11,733 & 19,691 & 232,219 \\
\hline 53 & & KS84U & Svis-A & 61 & 5 & 38,472 & 26,165 & 0.12500 & 40.00 & 7,249 & 0 & 7,249 & 638 & 602 & 8,489 \\
\hline 54 & & KS52U & svts-A & 12 & 1 & 12,954 & 10,183 & 0.12500 & 40.00 & 2,099 & 0 & 2,099 & 131 & 201 & 2,431 \\
\hline 55 & & KS46U & svts-A & 1,521 & 127 & 1,914,979 & 1,239,455 & 0.12500 & 40.00 & 300,212 & 0 & 300,212 & 16,587 & 29,931 & 346,731 \\
\hline 56 & & KS26U & svts-A & 24 & 2 & 50,336 & 32,873 & 0.12500 & 40.00 & 7,252 & 0 & 7,252 & 261 & 815 & 8,328 \\
\hline 57 & & KS49U & svts-A & 48 & 4 & 143,470 & 100,240 & 0.12500 & 40.00 & 19,854 & 0 & 19,854 & 1,416 & 2,080 & 23,349 \\
\hline 58 & & KS87U & svis-A & & 0 & & & 0.12500 & 40.00 & 0 & 0 & 0 & & & 0 \\
\hline 59 & & KS59U & svts-A & 12 & 1 & 237,090 & 158,830 & 0.12500 & 40.00 & 30,116 & 0 & 30,116 & 1,802 & 3,576 & 35,494 \\
\hline 60 & & ks50U & svts-A & 24 & 2 & 58,000 & 42,310 & 0.12500 & 40.00 & 8,210 & 0 & 8,210 & 386 & 850 & 9,446 \\
\hline 61 & & kS74U & svts-A & 24 & 2 & 181,680 & 126,170 & 0.12500 & 40.00 & 23,670 & 0 & 23,670 & 644 & 2,716 & 27,030 \\
\hline 62 & & ks70u & svts-A & 12 & 1 & 149,430 & 108,300 & 0.12500 & 40.00 & 19,159 & 0 & 19,159 & 1,673 & 2,170 & 23,002 \\
\hline 63 & & KS80U & svts-A & 48 & 4 & 196,860 & 138,740 & 0.12500 & 40.00 & 26,528 & 0 & 26,528 & 901 & 2,921 & 30,350 \\
\hline 64 & & KS02V & svts-A & 12 & 1 & 106,890 & 69,040 & 0.12500 & 40.00 & 13,841 & 0 & 13,841 & 644 & 1,605 & 16,090 \\
\hline 65 & & kS162 & svts-A & & 0 & & & 0.12500 & 40.00 & 0 & 0 & 0 & & & 0 \\
\hline 66 & & K589U & svts-A & 24 & 2 & 364,900 & 241,950 & 0.12500 & 40.00 & 46,573 & 0 & 46,573 & 2,703 & 5,501 & 54,777 \\
\hline 67 & & kS06Q & svts-A & 12 & 1 & 8,980 & 6,730 & 0.12500 & 40.00 & 1,603 & 0 & 1,603 & 901 & 149 & 2,653 \\
\hline 68 & & KS01T & svts & 12 & 1 & 16,030 & 11,440 & 0.12500 & 40.00 & 2,484 & 0 & 2,484 & 129 & 224 & 2,837 \\
\hline 69 & Total & & & 5,621 & 468 & 7,926,091 & 5,203,225 & & & 1,215,601 & 0 & 1,215,601 & 70,012 & 122,963 & 1,408,576 \\
\hline \multicolumn{16}{|l|}{70 Irrigation} \\
\hline 71 & & kS04U & ITS-A & & 0 & & & 0.05100 & 25.00 & 0 & 0 & 0 & & & 0 \\
\hline 72 & & kSozU & ITS-A & 2,597 & 216 & 4,032,615 & 52,036 & 0.05100 & 25.00 & 270,588 & 0 & 270,588 & & & 270,588 \\
\hline 73 & & kso1U & ITS-A & 1,700 & 142 & 2,829,538 & 188,527 & 0.05100 & 25.00 & 186,806 & 0 & 186,806 & & & 186,806 \\
\hline 74 & & кS23U & ITS-A & 240 & 20 & 333,594 & 31,954 & 0.05100 & 25.00 & 23,013 & 0 & 23,013 & & & 23,013 \\
\hline 75 & & kso3U & ITS-A & 437 & 36 & 1,551,374 & 41,021 & 0.05100 & 25.00 & 90,045 & 0 & 90,045 & & & 90,045 \\
\hline 76 & & kso8U & ITS-A & 300 & 25 & 543,833 & 40,684 & 0.05100 & 25.00 & 35,235 & 0 & 35,235 & & & 35,235 \\
\hline 77 & & kS05U & ITS-A & & 0 & & & 0.05100 & 25.00 & 0 & 0 & 0 & & & 0 \\
\hline 78 & & KS48U & ITS-A & 3 & 0 & 13,110 & 13,110 & 0.05100 & 25.00 & 744 & 0 & 744 & & & 744 \\
\hline 79 & Total & & & 5,277 & 440 & 9,304,064 & 367,332 & & & 606,432 & 0 & 606,432 & & & 606,43 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Line No.} & \multicolumn{2}{|l|}{Rate Schedule} & \multirow[b]{3}{*}{\[
\begin{gathered}
\text { Tariff } \\
\text { Number }
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Total } \\
\text { Number of } \\
\text { Bills }
\end{gathered}
\]} & \multirow[t]{3}{*}{Total Number of Customers} & \multirow{3}{*}{Volumes} & \multirow[t]{3}{*}{\begin{tabular}{l}
Winter Period \\
Volumes (Nov-Mar)
\end{tabular}} & \multicolumn{6}{|c|}{Existing Rates} & \multirow[t]{3}{*}{Per Books GSRS Revenues} & \multirow[t]{3}{*}{Per Books AVTS Revenues} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Total } \\
\text { Revenues }
\end{gathered}
\]} \\
\hline & Customer & Rate & & & & & & & Customer & Total Margin & Gas & & Total & & & \\
\hline & Class & Number & & & & & & Margin & Charge & Revenues & Unit Cost (1) & Revenues & Revenues & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Line No.} & \multicolumn{2}{|l|}{Rate Schedule} & \multirow{3}{*}{\[
\begin{gathered}
\text { Tariff } \\
\text { Number }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Total } \\
\text { Number of } \\
\text { Bills }
\end{gathered}
\]} & \multirow[t]{2}{*}{Total Number of Customers} & \multirow[b]{2}{*}{Volumes} & \multirow[t]{2}{*}{Winter Period Volumes (Nov-Mar)} & \multicolumn{6}{|c|}{Existing Rates} & \multirow[t]{2}{*}{Per Books GSRS Revenues} & \multirow[t]{3}{*}{Per Books AVTS Revenues} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Total } \\
\text { Revenues }
\end{gathered}
\]} \\
\hline & Customer
Class & \[
\begin{array}{|c|}
\hline \text { Rate } \\
\text { Number }
\end{array}
\] & & & & & & Margin & Customer Charge & Total Margin Revenues & Unit Cost (1) & Cost & \begin{tabular}{l}
Total \\
Revenues
\end{tabular} & & & \\
\hline & & & & & & therms & therms & \$therm & \$/bill & \$ & \$therm & & \$ & \$ & & \\
\hline
\end{tabular}

\([\mathrm{Q}] \quad[\mathrm{R}]\)



\title{
1.343.060 \\ 574 \\ 85,385 \\ 675.065
}

21 Large Volume Interruptible
\(\begin{array}{llll}22 & & \text { KS250 } & \text { LvI } \\ 23 & \text { KS251 } & \text { LVI } \\ 24 & \text { Total } & & \end{array}\)
25 Irrigation (Interruptible)
\begin{tabular}{llll}
25 & Irrigation (Interruptible) & & \\
KS300 & R \\
26 & & KS301 & \(\mathbb{R}\) \\
27 & Total & &
\end{tabular}

29 Wholesale KS350 WGS
\(\begin{array}{llll}30 & & \text { KS3550 } & \text { WGS } \\ 31 & \text { KS351 } & \text { WGS }\end{array}\)

34 (1) Average Actual Unit Cost of Gas for Year E


\(\begin{array}{ll}\text { KSO5U } & \text { ITS-A } \\ \text { KS48U } & \text { ITS-A }\end{array}\)

Page 6 of 12

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{80 Large Volume (Full Margin)} \\
\hline 81 & kS06U & LVTS-A \\
\hline 82 & KS04z & LVTS-A \\
\hline 83 & ks98U & LVTS-A \\
\hline 84 & kS09z & LVTS-A \\
\hline 85 & ks99U & LVTS-A \\
\hline 86 & Ks93U & LVTS-A \\
\hline 87 & KS28U & LVTS-A \\
\hline 88 & Ks91U & LVTS-A \\
\hline 89 & K555U & LVTSA \\
\hline 90 & KS57U & LVTS-A \\
\hline 91 & KS62U & LVTS-A \\
\hline 92 & KS05V & OLVTS-A \\
\hline 93 & KS51U & LVTS-A \\
\hline 94 & KS86U & LvTS-A \\
\hline 95 & kso3V & olvts-A \\
\hline 96 & kS04V & OLVTS-A \\
\hline 97 & KS56U & LVTS-A \\
\hline 98 & kS78U & LVTS-A \\
\hline 99 & KS79U & OLVTS-A \\
\hline 100 & KSO1V & LVTS-A \\
\hline 101 & KS182 & LVTS-A \\
\hline 102 & KS23z & OLVTS-A \\
\hline 103 & K588U & LVTS-A \\
\hline 104 & ks90U & OLVTS-A \\
\hline 105 & KS01Q & LVTS-A \\
\hline 106 & KS01k & LVTS \\
\hline 107 & kso3k & LVTS \\
\hline 108 & KS41K & LVTS \\
\hline 109 & KS42K & LVTS \\
\hline 110 & KS502 & LVTS \\
\hline 111 & KS504 & LVTS \\
\hline 112 & KS508 & LVTS \\
\hline 113 & KS509 & LVTS \\
\hline 114 & KS510 & LVTS \\
\hline 115 & KS516 & LVTS \\
\hline 116 & KS524 & LVTS \\
\hline 117 & KS527 & LVTS \\
\hline 118 & KS591 & LVTS \\
\hline
\end{tabular}


\begin{tabular}{rrrrrrrrrrrrrrr}
0 & 0 & 0 & 0 & 0 & \((648,798)\) & \((33,089)\) & 0 & \((33,089)\) & 12 & 1 & 391,710 & 173,130 & 26,183 & 0 \\
\((1,849,926)\) & \(1,063,976\) & \((267,771)\) & \((920,700)\) & \((1,188,470)\) & \((2,322,399)\) & \((118,442)\) & \((672,579)\) & \((791,022)\) & 36 & 3 & \(1,734,770\) & 747,580 & 111,567 & 675,065 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Black Hills Energy - Kansas Test Year Revenues Under Existing Rates Test Year Ended December 31, 2013}} & & & & & & \multicolumn{3}{|c|}{Exhibit __(TJS-10)} \\
\hline & & & & & & & & & & \\
\hline & [A] & [B] & [c] & [AG] & [AH] & [A] & [AJ] & [АК] & [AL] & [AM] \\
\hline & & & & \multicolumn{7}{|c|}{Adjusted Test Year (Including GSRS and Excluding AVTS Revenues)} \\
\hline \multirow[b]{2}{*}{Line No.} & Rate Sc & & & Total & Total & & Winter Period & \multicolumn{3}{|c|}{Revenues} \\
\hline & Customer & \[
\begin{gathered}
\text { Rate } \\
\text { Number }
\end{gathered}
\] & Tarift & \begin{tabular}{l}
Number of \\
Bills
\end{tabular} & Number of Customers & Volumes & Volumes (Nov-Mar) & Margin Revenues & Gas Cost Revenues & \[
\begin{gathered}
\hline \text { Total } \\
\text { Revenues }
\end{gathered}
\] \\
\hline & & & & & & therms & therms & \$ & \$ & \$ \\
\hline \multicolumn{2}{|c|}{1 Sales} & & & & & & & & & \\
\hline & ential & Ks001 & RS-1 & 1,186,548 & 98,879 & 70,347,245 & 51,207,857 & 30,895,994 & 35,048,670 & 65,944,664 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{3
4}} & & & & & & & & & \\
\hline & & kS050 & SC-1 & & & & & & & \\
\hline 5 & & KS052 & sc-1 & & & & & & & \\
\hline 6 & & kS055 & sc-1 & & & & & & & \\
\hline 7 & Total & & & 104,048 & 8,671 & 12,508,905 & 9,830,958 & 4,480,279 & 6,205,923 & 10,686,202 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{8 Small Volume Firm}} & & & & & & & & & \\
\hline & & kS110 & SvF & & & & & & & \\
\hline 10 & & ks111 & SVF & & & & & & & \\
\hline 11 & Total & & & 10,872 & 906 & 11,843,867 & 7,830,074 & 2,032,553 & 5,930,451 & 7,963,004 \\
\hline \multicolumn{3}{|c|}{12 Small Volume Interrupitile} & & & & & & & & \\
\hline 13 & & KS125 & sVI & & & & & & & \\
\hline 14 & & KS126 & sVI & & & & & & & \\
\hline 15 & Total & & & 1,075 & 90 & 942,550 & 579,694 & 172,572 & 353,631 & 526,203 \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\({ }_{17}^{16}\) Large Volume Firm}} & & & & & & & & & \\
\hline & & kS275 & LVF & & & & & & & \\
\hline 18 & & KS276 & LVF & & & & & & & \\
\hline 19 & & KS277 & LVF & & & & & & & \\
\hline 20 & Total & & & 295 & 25 & 3,688,194 & 2,047,940 & 297,787 & 1,853,804 & 2,151,591 \\
\hline \multicolumn{3}{|c|}{21 Large Volume Interruptible} & & & & & & & & \\
\hline \multirow[t]{2}{*}{22
23} & & KS250 & LVI & & & & & & & \\
\hline & & kS251 & LVI & & & & & & & \\
\hline 24 & Total & & & 138 & 12 & 1,615,074 & 582,163 & 133,188 & 628,205 & 761,392 \\
\hline \multicolumn{4}{|c|}{25 Irrigation (Interrupitile)} & & & & & & & \\
\hline \multirow[t]{2}{*}{26
27} & & KS300 & IR & & & & & & & \\
\hline & & KS301 & IR & & & & & & & \\
\hline 28 & Total & & & 15,490 & 1,291 & 30,539,100 & 2,014,420 & 1,944,744 & 12,272,918 & 14,217,662 \\
\hline \multicolumn{2}{|c|}{29 Wholesale} & & & & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{30
31}} & KS350 & WGS & & & & & & & \\
\hline & & KS351 & was & & & & & & & \\
\hline 32 & Total & & & 84 & 7 & 1,165,315 & 800,098 & 90,258 & 579,966 & 670,223 \\
\hline \multicolumn{2}{|c|}{33 Total Sales} & & & 1,318,550 & 109,879 & 132,650,250 & 74,893,203 & 40,047,375 & 62,873,567 & 102,920,942 \\
\hline \multicolumn{4}{|r|}{34 (1) Average Actual Unit Cost of Gas for Year E} & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Black Hills Energy - Kansas \\
Exhibit \(\qquad\) (TJS-10) \\
Test Year Revenues Under Existing Rates \\
Test Year Ended December 31, 2013
\end{tabular}}} \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{} & [A] & \multirow[t]{2}{*}{[B]} & \multirow[t]{2}{*}{[c]} & \multicolumn{2}{|l|}{[AG] [AH]} & [Al] & [AJ] & [AK] & [AL] & [AM] \\
\hline & & & & \multicolumn{7}{|c|}{Adjusted Test Year (Including GSRS and Excluding AVTS Revenues)} \\
\hline & \multicolumn{2}{|l|}{Rate Schedule} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Tariff } \\
\text { Number } \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Total } \\
\text { Number of } \\
\text { Bills } \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Total } \\
\text { Number of } \\
\text { Customers }
\end{gathered}
\]} & \multirow[b]{2}{*}{Volumes} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline Winter Period \\
Volumes \\
(Nov-Mar)
\end{tabular}} & \multicolumn{3}{|l|}{luding AVTS Revenues)
Revenues} \\
\hline Line No. & \begin{tabular}{l}
Customer \\
Class
\end{tabular} & \[
\begin{array}{|c}
\text { Rate } \\
\text { Number }
\end{array}
\] & & & & & & Margin Revenues & Gas Cost Revenues & \[
\begin{gathered}
\text { Total } \\
\text { Revenues }
\end{gathered}
\] \\
\hline & & & & & & therms & therms & s & \$ & \$ \\
\hline \multicolumn{11}{|c|}{\({ }^{35}\) Transportation} \\
\hline \multicolumn{11}{|c|}{36 Small Commercial} \\
\hline 37 & & Ks63U & SCTS-A & & & & & & & \\
\hline 38 & & KS64U & SCTS-A & & & & & & & \\
\hline 39 & & KS65U & SCTS-A & & & & & & & \\
\hline 40 & & KS66U & SCTS-A & & & & & & & \\
\hline 41 & & KS67U & SCTS-A & & & & & & & \\
\hline 42 & & KS68U & SCTS-A & & & & & & & \\
\hline 43 & & ks69U & SCTS-A & & & & & & & \\
\hline 44 & & kS27U & SCTS-A & & & & & & & \\
\hline 45 & Total & & & 1,446 & 121 & 232,318 & 167,265 & 70,770 & 0 & 70,770 \\
\hline \multicolumn{11}{|c|}{46 Small Volume} \\
\hline 47 & & Ks60U & SvTS-A & & & & & & & \\
\hline 48 & & kS12Z & SvTS-A & & & & & & & \\
\hline 49 & & kS07U & svis-A & & & & & & & \\
\hline 50 & & kS96U & SVTS-A & & & & & & & \\
\hline 51 & & Ks94U & svis-A & & & & & & & \\
\hline 52 & & ksogu & svis-A & & & & & & & \\
\hline 53 & & KS84U & SVTS-A & & & & & & & \\
\hline 54 & & KS52U & SVTS-A & & & & & & & \\
\hline 55 & & KS46U & svis-A & & & & & & & \\
\hline 56 & & kS26U & svis-A & & & & & & & \\
\hline 57 & & kS49U & svis-a & & & & & & & \\
\hline 58 & & KS87U & SVTS-A & & & & & & & \\
\hline 59 & & KS59U & SVTS-A & & & & & & & \\
\hline 60 & & ks50U & svis-A & & & & & & & \\
\hline 61 & & kS74U & svis-A & & & & & & & \\
\hline 62 & & kS70U & svis-a & & & & & & & \\
\hline 63 & & ks80U & svis-A & & & & & & & \\
\hline 64 & & KS02V & SvTS-A & & & & & & & \\
\hline 65 & & kS16Z & SvTS-A & & & & & & & \\
\hline 66 & & KS89U & SVTS-A & & & & & & & \\
\hline 67 & & kS06Q & SVTS-A & & & & & & & \\
\hline 68 & & kS01T & svts & & & & & & & \\
\hline 69 & Total & & & 5,621 & 468 & 7,926,091 & 5,203,225 & 1,285,613 & 0 & 1,285,613 \\
\hline \multicolumn{11}{|c|}{70 Irrigation} \\
\hline 71 & & kS04U & ITS-A & & & & & & & \\
\hline 72 & & kSozU & ITS-A & & & & & & & \\
\hline 73 & & kSo1U & ITS-A & & & & & & & \\
\hline 74 & & kS23U & ITS-A & & & & & & & \\
\hline 75 & & kso3U & ITS-A & & & & & & & \\
\hline 76 & & kso8U & ITS-A & & & & & & & \\
\hline 77 & & kS05U & ITS-A & & & & & & & \\
\hline 78 & & KS48U & ITS-A & & & & & & & \\
\hline 79 & Total & & & 5,277 & 440 & 8,655,266 & 334,243 & 573,344 & 0 & 573,344 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Black Hills & - Kansas & & & & & & & & Exhibit __(TJ & \\
\hline Test Year Test Year & Des Under Ex & Rates & & & & & & & & \\
\hline & [A] & [B] & [c] & [AG] & [AH] & [A] & [AJ] & [AK] & [AL] & [AM] \\
\hline & & & & & Adjusted T & st Year (Incluc & ing GSRS and E & cluding AVTS & evenues) & \\
\hline & Rate Sch & & & Total & Total & & Winter Period & & Revenues & \\
\hline & Customer & Rate & Tarift & Number of & Number of & Volumes & Volumes & Margin & Gas Cost & Total \\
\hline Line №. & Class & Number & Number & Bills & Customers & & (Nov-Mar) & Revenues & Revenues & Revenues \\
\hline & & & & & & therms & therms & \$ & \$ & \$ \\
\hline & Volume (Full & & & & & & & & & \\
\hline 81 & & kS06U & LVTS-A & & & & & & & \\
\hline 82 & & kS04z & LVTS-A & & & & & & & \\
\hline 83 & & kS98U & LVTS-A & & & & & & & \\
\hline 84 & & ks09z & LVTS-A & & & & & & & \\
\hline 85 & & kS99U & LVTS-A & & & & & & & \\
\hline 86 & & kS93U & LVTS-A & & & & & & & \\
\hline 87 & & kS28U & LVTS-A & & & & & & & \\
\hline 88 & & ks91U & LVTS-A & & & & & & & \\
\hline 89 & & ks55U & LVTS-A & & & & & & & \\
\hline 90 & & kS57U & LVTS-A & & & & & & & \\
\hline 91 & & KS62U & LVTS-A & & & & & & & \\
\hline 92 & & kS05V & olvts-A & & & & & & & \\
\hline 93 & & kS51U & LVTS-A & & & & & & & \\
\hline 94 & & ks86U & LVTS-A & & & & & & & \\
\hline 95 & & kso3v & OLVTS-A & & & & & & & \\
\hline 96 & & kS04V & OLVTS-A & & & & & & & \\
\hline 97 & & KS56U & LVTS-A & & & & & & & \\
\hline 98 & & kS78U & LVTS-A & & & & & & & \\
\hline 99 & & kS79U & olvts-A & & & & & & & \\
\hline 100 & & kS01V & LVTS-A & & & & & & & \\
\hline 101 & & kS182 & LVTS-A & & & & & & & \\
\hline 102 & & kS23z & OLVTS-A & & & & & & & \\
\hline 103 & & KS88U & LVTS-A & & & & & & & \\
\hline 104 & & ks90U & OLVTS-A & & & & & & & \\
\hline 105 & & kS01Q & LVTS-A & & & & & & & \\
\hline 106 & & kS01K & LVTS & & & & & & & \\
\hline 107 & & kS03k & LVTS & & & & & & & \\
\hline 108 & & kS41K & LVTS & & & & & & & \\
\hline 109 & & kS42k & LVTS & & & & & & & \\
\hline 110 & & kS502 & LVTS & & & & & & & \\
\hline 111 & & KS504 & LVTS & & & & & & & \\
\hline 112 & & KS508 & LVTS & & & & & & & \\
\hline 113 & & KS509 & LVTS & & & & & & & \\
\hline 114 & & KS510 & LVTS & & & & & & & \\
\hline 115 & & KS516 & LVTS & & & & & & & \\
\hline 116 & & KS524 & LVTS & & & & & & & \\
\hline 117 & & KS527 & LVTS & & & & & & & \\
\hline 118 & & KS591 & LVTS & & & & & & & \\
\hline 119 & Total & & & 1,424 & 119 & 34,415,039 & 17,106,528 & 2,423,738 & 0 & 2,423,738 \\
\hline
\end{tabular}


\title{
Black Hills Energy - Kansas \\ Exhibit_(TJS-11) \\ unctional Classification of Rate Bas \\ table 2 \\ Page 1 of
}


\title{
Black Hills Energy - Kansas \\ Functional Classification of Rate Base \\ Test Year Ended December 31, 2013 \\ Exhibit_(TJS-11) \\ able 2 \\ Page 2 of
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{[A] [B]} & [C] & \multicolumn{2}{|l|}{[D] [E]} & \multicolumn{2}{|l|}{[F] [G]} & \multicolumn{2}{|l|}{[H] [l]} & \multicolumn{2}{|l|}{[J] [K]} & [L] & \multicolumn{2}{|l|}{[M]} & [ N\(]\) \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{c|}
\hline \text { Line } \\
\text { Number } \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Acct.
No.}} & \[
\begin{gathered}
\text { Total } \\
\text { Gas Utility }
\end{gathered}
\] & \multicolumn{2}{|c|}{Gas Supply} & \multicolumn{2}{|l|}{Transmission} & \multicolumn{2}{|c|}{Distribution} & \multirow[b]{2}{*}{Services} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Meters } \\
\text { and } \\
\text { Regulators }
\end{gathered}
\]} & \multirow[t]{2}{*}{Customer Accounts} & \multirow[b]{2}{*}{Direct} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Allocation Basis or}} \\
\hline & & & Adjusted & Demand & Commodity & Demand & Commodity & Demand & Customer & & & & & & \\
\hline & & & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & & \\
\hline 46 & \multicolumn{15}{|l|}{Accumulated Depreciation} \\
\hline 47 & & Intangible & 1,649,801 & 308 & 0 & 63,882 & 100,859 & 200,985 & 197,230 & 294,144 & 339,912 & 452,481 & & 0 & Intangible Plant \\
\hline 48 & & Production \& Gathering & 8,580 & 0 & 0 & 1,109 & 555 & 3,490 & 3,425 & 0 & & 0 & & 0 & Prod. \& Gathering Plant \\
\hline 49 & & Transmission & 12,332,507 & 0 & 0 & 1,594,593 & 797,913 & 5,016,864 & 4,923,137 & 0 & 0 & 0 & & 0 & Transmission Plant \\
\hline 50 & & Distribution & 65,358,968 & 0 & 0 & 4,000,602 & 2,001,848 & 12,586,581 & 12,351,434 & 18,447,975 & 15,970,527 & 0 & & 0 & Distribution Plant \\
\hline 51 & & General & 14,537,261 & 2,711 & 0 & 562,900 & 888,725 & 1,770,980 & 1,737,894 & 2,591,858 & 2,995,142 & 3,987,051 & & 0 & General Plant \\
\hline 52 & & Total Accumulated Depreciation & 93,887,117 & 3,018 & 0 & 6,223,087 & 3,789,901 & 19,578,900 & 19,213,120 & 21,333,977 & 19,305,582 & 4,439,532 & & 0 & Sum of Lines 47 thru 51 \\
\hline 53 & & Net Plant & 147,847,659 & 3,414 & 0 & 10,254,874 & 5,895,908 & 32,263,595 & 31,660,834 & 33,125,076 & 29,622,814 & 5,021,143 & & 0 & Line 45 - Line 52 \\
\hline 54 & \multicolumn{15}{|l|}{Other Rate Base ltems} \\
\hline 55 & & Working Capital & 724,090 & 135 & 0 & 28,038 & 44,267 & 88,211 & 86,563 & 129,098 & 149,186 & 198,592 & & 0 & Supervised O\&M \\
\hline 56 & & Materials \& Supplies & 948,379 & 25 & 0 & 64,647 & 38,000 & 203,390 & 199,590 & 213,655 & 191,957 & 37,116 & & 0 & Plant in Service \\
\hline 57 & & Gas Storage & 2,980,645 & 2,980,645 & & & & & & & & & & & Gas Supply - Demand \\
\hline 58 & & Prepayments & 389,491 & 9 & 0 & 27,016 & 15,532 & 84,995 & 83,408 & 87,265 & 78,039 & 13,228 & & 0 & Net Plant \\
\hline 59 & & Customer Advances & \((541,465)\) & (101) & 0 & \((20,966)\) & \((33,102)\) & \((65,963)\) & \((64,731)\) & \((96,538)\) & \((111,559)\) & (148,504) & & 0 & Supervised O\&M \\
\hline 60 & & Customer Deposits & \((1,552,797)\) & & & & & & & & & \((1,552,797)\) & & & Customer Accounts \\
\hline 61 & & Reserves for Injuries and Damages & (811,616) & (151) & 0 & \((31,427)\) & \((49,618)\) & \({ }^{(98,874)}\) & \((97,027)\) & \((144,704)\) & (167,219) & (222,597) & & 0 & Supervised O\&M \\
\hline 62
63 & & Accum. Deferred Income Taxes
Unclaimed Check Reserves & (18,790,961) & (434) & 0 & \((1,303,361)\) & \((749,351)\) & \((4,100,599)\) & \((4,023,990)\) & \((4,210,090)\) & \((3,764,964)\) & \((638,171)\) & & 0 & Net Plant \\
\hline 64 & & Total Other Rate Base Items & (16,654,426) & 2,980,128 & 0 & \((1,236,055)\) & (734,272) & \((3,888,840)\) & \((3,816,187)\) & \((4,021,314)\) & \((3,624,561)\) & \((2,313,326)\) & & 0 & Sum of Lines 55 thru 63 \\
\hline 65 & & Total Rate Base & 131,193,233 & 2,983,542 & 0 & 9,018,820 & 5,161,636 & 28,374,755 & 27,844,647 & 29,103,762 & 25,998,253 & 2,707,818 & & 0 & Line \(53+\) Line 64 \\
\hline
\end{tabular}

\title{
Black Hills Energy - Kansas \\ Functional Classification of Operation and Maintenance Expenses
Test Year Ended December 31, 2013
}

Exhibit_(TJS-11)
Table 3
Page 1 of


\title{
Black Hills Energy - Kansas \\ Functional Classification of Operation and Maintenance Expenses \\ Test Year Ended December 31, 2013
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{[A]} & [B] & [C] & \multicolumn{2}{|l|}{[D] [E]} & \multicolumn{2}{|l|}{[F] [G]} & \multicolumn{2}{|l|}{[H] [l]} & \multicolumn{2}{|l|}{[J] [K]} & [L] & \multicolumn{2}{|l|}{[M]} & [ N\(]\) \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { Line } \\
\text { Number } \\
\hline
\end{array}
\]} & Acct. & \multirow[b]{2}{*}{Description} & \[
\begin{gathered}
\text { Total } \\
\text { Gas Utility }
\end{gathered}
\] & \multicolumn{2}{|c|}{Gas Supply} & \multicolumn{2}{|l|}{Transmission} & \multicolumn{2}{|c|}{Distribution} & \multirow[b]{2}{*}{Services} & \multirow[t]{2}{*}{Meters
and
Regulators} & \multirow[t]{2}{*}{Customer Accounts} & \multirow[b]{2}{*}{Direct} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Allocation Basis or Reference}} \\
\hline & No. & & Adjusted & Demand & Commodity & Demand & Commodity & Demand & Customer & & & & & & \\
\hline & & & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & & \\
\hline 62 & & Customer Accounts Expenses & & & & & & & & & & & & & \\
\hline 63 & 901 & Supervision & 307,664 & & & & & & & & & 307,664 & & & Customer Accounts \\
\hline 64 & 902 & Meter Reading Expenses & 660,178 & & & & & & & & & 660,178 & & & Customer Accounts \\
\hline 65 & 903 & Customer Records \& Collection & 2,434,272 & & & & & & & & & 2,434,272 & & & Customer Accounts \\
\hline 66 & 904 & Uncollectible Accounts & 672,679 & & & & & & & & & 672,679 & & & Customer Accounts \\
\hline 67 & 905 & Miscellaneous & 177,311 & & & & & & & & & 177,311 & & & Customer Accounts \\
\hline 68 & & Total Customer Accounts Expenses & 4,252,104 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4,252,104 & & 0 & Sum of Lines 63 thru 67 \\
\hline 69 & & Customer Service \& Inform. Exp. & & & & & & & & & & & & & \\
\hline 70 & 907 & Supervision & 348,347 & & & & 174,174 & & & & & 174,174 & & & 50\% Trans Com., 50\% Cust Accts. \\
\hline 71 & 908 & Customer Assistance Expenses & 403,395 & & & & 201,698 & & & & & 201,698 & & & \(50 \%\) Trans Com., 50\% Cust Accts. \\
\hline 72 & 909 & Information \& Instruction Exp. & 41,855 & & & & 20,928 & & & & & 20,928 & & & 50\% Trans Com., 50\% Cust Accts. \\
\hline 73 & 910 & Miscellaneous & 39,090 & & & & 19,545 & & & & & 19,545 & & & 50\% Trans Com., 50\% Cust Accts. \\
\hline 74 & & Total Cust. Service \& Inf. Exp. & 832,687 & 0 & 0 & 0 & 416,344 & 0 & 0 & 0 & 0 & 416,344 & & 0 & Sum of Lines 70 thru 73 \\
\hline 75 & & Sales Expenses & & & & & & & & & & & & & \\
\hline 76 & 911 & Supervision & 229,909 & & & & 114,955 & & & & & 114,955 & & & 50\% Trans Com., 50\% Cust Accts. \\
\hline 77 & 912 & Demonstrating \& Selling Exp. & 199,958 & & & & 99,979 & & & & & 99,979 & & & \(50 \%\) Trans Com., 50\% Cust Accts. \\
\hline 78 & 913 & Advertising Expenses & 115 & & & & 58 & & & & & 58 & & & 50\% Trans Com., 50\% Cust Accts. \\
\hline 79 & 916 & Miscellaneous & 21,259 & & & & 10,630 & & & & & 10,630 & & & 50\% Trans Com., 50\% Cust Accts. \\
\hline 80 & & Total Sales Expenses & 451,241 & 0 & 0 & 0 & 225,621 & 0 & 0 & 0 & 0 & 225,621 & & 0 & Sum of Lines 76 thru 79 \\
\hline 81 & & Administrative \& General Expenses & & & & & & & & & & & & & \\
\hline 82 & & Operation & & & & & & & & & & & & & \\
\hline 83 & 920 & A \& G Salaries & 7,844,877 & 1,463 & 0 & 303,763 & 479,591 & 955,691 & 937,836 & 1,398,668 & 1,616,297 & 2,151,569 & & 0 & Supervised O\&M \\
\hline 84 & & Supply Allowance & 144,685 & & & & 144,685 & & & & & & & & \$0.01 per dt of Throughput \\
\hline 85 & 921 & Office Supplies \& Expenses & 1,642,319 & 306 & 0 & 63,593 & 100,402 & 200,073 & 196,335 & 292,810 & 338,370 & 450,429 & & 0 & Supervised O\&M \\
\hline 86 & 922 & Transfers & \((362,816)\) & (68) & 0 & \((14,049)\) & \((22,181)\) & \((44,200)\) & \((43,374)\) & \((64,687)\) & (74,752) & \((99,507)\) & & 0 & Supervised O\&M \\
\hline 87 & 923 & Outside Services Employed & 1,030,197 & 192 & 0 & 39,890 & 62,980 & 125,502 & 123,158 & 183,674 & 212,254 & 282,546 & & 0 & Supervised O\&M \\
\hline 88 & 924 & Property Insurance & 5,601 & 0 & 0 & 388 & 223 & 1,222 & 1,199 & 1,255 & 1,122 & 190 & & 0 & Net Plant \\
\hline 89 & 925 & Injuries \& Damages & 594,226 & 111 & 0 & 23,009 & 36,328 & 72,391 & 71,038 & 105,945 & 122,430 & 162,975 & & 0 & Supervised O\&M \\
\hline 90 & 926 & Employee Pensions \& Benefits & 90,597 & 17 & 0 & 3,508 & 5,539 & 11,037 & 10,831 & 16,153 & 18,666 & 24,848 & & 0 & Supervised O\&M \\
\hline 91 & 928 & Regulatory Commission Expense & 213,047 & & & & 213,047 & & & & & & & & Transmission - Commodity \\
\hline 92 & 930 & Miscellaneous & 800,152 & 149 & 0 & 30,983 & 48,917 & 97,477 & 95,656 & 142,660 & 164,857 & 219,453 & & 0 & Supervised O\&M \\
\hline 93 & 931 & Rents & 221,737 & 41 & 0 & 8,586 & 13,556 & 27,013 & 26,508 & 39,534 & 45,685 & 60,815 & & 0 & Supervised O\&M \\
\hline 94 & 935 & Maintenance of General Plant & 568,989 & 106 & 0 & 22,032 & 34,785 & 69,316 & 68,021 & 101,445 & 117,230 & 156,053 & & 0 & Supervised O\&M \\
\hline 95 & & Total A \& G Expenses & 12,793,611 & 2,318 & 0 & 481,704 & 1,117,871 & 1,515,523 & 1,487,209 & 2,217,457 & 2,562,159 & 3,409,371 & & 0 & Sum of Lines 83 thru 94 \\
\hline 96 & & Total Operation \& Maintenance & 28,858,697 & 5,878 & 0 & 1,077,690 & 2,058,832 & 3,390,598 & 3,327,253 & 4,961,660 & 5,733,348 & 8,303,439 & & 0 & Sum of Lines 15, 16,17,34,61,68,74,80,95 \\
\hline 97 & & Supervised O \& M before General & 15,391,687 & 2,870 & 0 & 595,984 & 940,960 & 1,875,069 & 1,840,039 & 2,744,194 & 3,171,182 & 4,221,389 & & 0 & L15+L16+L34+L61-L47+L68-L66+L74+L80 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{[A] [B]} & [C] & \multicolumn{2}{|l|}{[D] [E]} & \multicolumn{2}{|l|}{[F] [G]} & \multicolumn{2}{|l|}{[H] []]} & \multicolumn{2}{|l|}{[J] [K]} & \multicolumn{2}{|l|}{[L] [M]} & [ N\(]\) \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{c|}
\hline \text { Line } \\
\text { Number } \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Acct.
No.}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Total } \\
\text { Gas Utility } \\
\text { Adjusted } \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|c|}{Gas Supply} & \multicolumn{2}{|l|}{Transmission} & \multicolumn{2}{|l|}{Distribution} & \multirow[b]{2}{*}{Services} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Meters } \\
\text { and } \\
\text { Regulators } \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{Customer Accounts} & \multirow[b]{2}{*}{Direct} & \multirow[b]{2}{*}{Allocation Basis or Reference} \\
\hline & & & & Demand & Commodity & Demand & Commodity & Demand & Customer & & & & & \\
\hline & & & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \\
\hline 1 & \multicolumn{14}{|l|}{Depreciation Expense} \\
\hline 2 & & Intangible & 113,835 & 21 & 0 & 4,408 & 6,959 & 13,868 & 13,609 & 20,296 & 23,454 & 31,221 & 0 & Intangible Plant \\
\hline 3 & & Production \& Gathering & 623 & 0 & 0 & 81 & 40 & 253 & 249 & 0 & 0 & 0 & 0 & Prod. \& Gathering Plant \\
\hline 4 & & Transmission & 497,414 & 0 & 0 & 64,316 & 32,183 & 202,348 & 198,568 & - 0 & O 0 & 0 & 0 & Transmission Plant \\
\hline 5 & & Distribution & 4,035,534 & , & 0 & 247,014 & 123,602 & 777,148 & 762,629 & 1,139,055 & 986,087 & 0 & 0 & Distribution Plant \\
\hline 6 & & General & 1,221,339 & 228 & 0 & 47,292 & 74,666 & 148,788 & 146,008 & 217,753 & 251,635 & 334,970 & 0 & General Plant \\
\hline 7 & & Total Depreciation Expense & 5,868,745 & 249 & 0 & 363,110 & 237,450 & 1,142,405 & 1,121,062 & 1,377,104 & 1,261,175 & 366,190 & 0 & Sum of Lines 2 thru 6 \\
\hline 8 & \multicolumn{14}{|l|}{Taxes Other Than Income Taxes} \\
\hline 10 & & Property Taxes & 5,520,920 & 127 & 0 & 382,937 & 220,165 & 1,204,786 & 1,182,277 & 1,236,955 & 1,106,174 & 187,499 & 0 & Net Plant \\
\hline 10 & & Payroll Taxes & (64,361) & (12) & 0 & \((2,492)\) & \((3,935)\) & \((7,841)\) & \((7,694)\) & (11,475) & (13,260) & \((17,652)\) & 0 & Supervised O\&M \\
\hline 11 & & Miscellaneous & 165,051 & 31 & 0 & 6,391 & 10,090 & 20,107
\(1,217,052\) & 19,731
1,194315 & \(\xrightarrow{29,427}\) & -1,126,006 & 45,268 & 0 & Supervised O\&M \\
\hline 12 & & Total Taxes Other than Income Taxes & 5,621,610 & 146 & 0 & 386,836 & 226,320 & 1,217,052 & 1,194,315 & 1,254,907 & 1,126,919 & 215,115 & 0 & Sum of Lines 9 thru 11 \\
\hline 13 & \multicolumn{14}{|l|}{Other Operating Revenues} \\
\hline 14 & 487 & Forfeited Discounts & 444,424 & & & & & & & & & & 444,424 & Direct \\
\hline 15 & 488 & Misc. Service Revenues & 772,974 & 144 & 0 & 29,930 & 47,255 & 94,166 & 92,407 & 137,814 & 159,257 & 211,999 & 0 & Supervised O\&M \\
\hline 16 & 489 & Trans. And lrrig. Revenues \& Revenue Credits & 3,799,296 & & & 491,249 & 245,814 & 1,545,553 & 1,516,679 & & & & & Mains Allocation \\
\hline 17 & 492 & Incidental Gasoline \& Oil Sales & 0 & & 0 & & & & & & & & & \\
\hline 18 & 495 & Other Gas Revenues & 622,146 & 116 & 0 & 24,090 & 38,034 & 75,792 & 74,376 & 110,923 & 128,182 & 170,632 & 0 & Supervised O\&M \\
\hline 19
20 & & Customer Deposits Interest Expense
Total Other Operating Revenues & \((2,839)\)
\(5,636,001\) & 260 & 0 & 545,270 & 331,104 & 1,715,512 & 1,683,462 & 248,737 & 287,440 & \((2,839)\)
379,792 & 444,424 & Customer Accounts Sum of Lines 14 thru 19 \\
\hline
\end{tabular}

\section*{Black Hills Energy - Kansas}

Cassification of Cost of Service and Rate Base
Test Year Ended December 31, 2013
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{[A] [B]} & [C] & \multicolumn{2}{|l|}{[D] [E]} & \multicolumn{2}{|l|}{[F] [G]} & \multicolumn{2}{|l|}{[H] []]} & \multicolumn{2}{|l|}{[J] [K]} & [L] & [M] & [ N ] \\
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{c|c|c} 
Line & Acct. \\
Number & No. & Description \\
\hline
\end{tabular}}} & \[
\begin{gathered}
\text { Total } \\
\text { Gas Utility }
\end{gathered}
\] & \multicolumn{2}{|c|}{Gas Supply} & \multicolumn{2}{|l|}{Transmission} & \multicolumn{2}{|c|}{Distribution} & \multirow[b]{2}{*}{Services} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Meters } \\
\text { and } \\
\text { Regulators }
\end{gathered}
\]} & \multirow[t]{2}{*}{Customer Accounts} & \multirow[b]{2}{*}{Direct} & \multirow{3}{*}{Allocation Basis or Reference} \\
\hline & & & Adjusted & Demand & Commodity & Demand & Commodity & Demand & Customer & & & & & \\
\hline & & & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \\
\hline \multicolumn{15}{|c|}{Summary} \\
\hline 2 & & Rate Base & 131,193,233 & 2,983,542 & 0 & 9,018,820 & 5,161,636 & 28,374,755 & 27,844,647 & 29,103,762 & 25,998,253 & 2,707,818 & 0 & Table 2 Line 65 \\
\hline 3 & & Rate of Return & 7.5220\% & 7.5220\% & 7.5220\% & 7.5220\% & 7.5220\% & 7.5220\% & 7.5220\% & 7.5220\% & 7.5220\% & 7.5220\% & 7.5220\% & \\
\hline 4 & & Total Cost of Service & & & & & & & & & & & & \\
\hline 5 & & Operation \& Maintenance Expenses & 28,858,697 & 5,878 & 0 & 1,077,690 & 2,058,832 & 3,390,598 & 3,327,253 & 4,961,660 & 5,733,348 & 8,303,439 & 0 & Table 3 Line 96 \\
\hline 6 & & Depreciation Expenses & \(5,868,745\) & 249 & 0 & 363,110 & 237,450 & 1,142,405 & 1,121,062 & 1,377, 104 & 1,261,175 & 366,190 & 0 & Table 4 Line 7 \\
\hline 7 & & Taxes Other Than Income Taxes & 5,621,610 & 146 & 0 & 386,836 & 226,320 & 1,217,052 & 1,194,315 & 1,254,907 & 1,126,919 & 215,115 & 0 & Table 4 Line 12 \\
\hline 8 & & Return & 9,868,355 & 224,422 & 0 & 678,396 & 388,258 & 2,134,349 & 2,094,474 & 2,189,185 & 1,955,589 & 203,682 & 0 & Line \(2 \times\) Line 3 \\
\hline 9 & & Income Taxes & 4,580,045 & 104,157 & 0 & 314,853 & 180,196 & 990,582 & 972,076 & 1,016,032 & 907,617 & 94,532 & 0 & Rate Base \\
\hline 10 & & Other Operating Revenues & \((5,636,001)\) & (260) & 0 & \((545,270)\) & \((331,104)\) & (1,715,512) & \((1,683,462)\) & \((248,737)\) & \((287,440)\) & (379,792) & \((444,424)\) & Table 4 Line 20 \\
\hline 11 & & Total Cost of Service & 49,161,451 & 334,592 & 0 & 2,275,614 & 2,759,953 & 7,159,474 & 7,025,718 & 10,550,151 & 10,697,208 & 8,803,166 & \((444,424)\) & Sum of Lines 5 thru 10 \\
\hline
\end{tabular}

\title{
Black Hills Energy - Kansas
}

Exhibit_(TJS-12)
Rate of Return Under Current and Traditional Rate Design
Test Year Ended December 31, 2013

Table 1
Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & [A] & [B] & [C] & \multicolumn{2}{|l|}{[D] [E]} & [F] & \multicolumn{2}{|l|}{[G] [H]} & [1] \\
\hline & \multirow[b]{2}{*}{Description} & & & & and Transportation & & Interrup & & \multirow[b]{2}{*}{Basis of Allocation or Reference} \\
\hline Line Number & & Gas Utility Adjusted & Residential Service & Small Commercial & Small Volume & Large Volume & Small Volume & Large Volume & \\
\hline & & \$ & \$ & \multicolumn{2}{|l|}{\$ \$} & \$ & \multicolumn{2}{|l|}{\$ \$} & \\
\hline 1 & \multicolumn{9}{|l|}{Return Under Existing Rates} \\
\hline 2 & Rate Base & 131,193,233 & 94,882,673 & 14,278,954 & 11,396,251 & 9,831,846 & 505,912 & 297,596 & Table 3 Line 18 \\
\hline 3 & Sales Revenues & 92,483,400 & 65,944,664 & 10,756,972 & 9,248,617 & 5,245,552 & 526,203 & 761,392 & Exhibit TJS-10 \\
\hline 4 & Cost of Gas & 50,600,649 & 35,048,670 & 6,205,923 & 5,930,451 & 2,433,770 & 353,631 & 628,205 & Exhibit TJS-10 \\
\hline 5 & Sales Revenues Excluding Gas Cost & 41,882,751 & 30,895,994 & 4,551,049 & 3,318,166 & 2,811,782 & 172,572 & 133,188 & Line 3 - Line 4 \\
\hline 6 & Net Cost of Service & 49,161,451 & 35,865,914 & 5,627,919 & 4,069,671 & 3,270,675 & 204,736 & 122,536 & Table 2 Line 19 \\
\hline 7 & Revenue Deficiency & 7,278,700 & 4,969,920 & 1,076,870 & 751,504 & 458,893 & 32,164 & \((10,651)\) & Line 6 - Line 5 \\
\hline 8 & Additional Customer Charge Revenues from Negotiated LV & 26,352 & 17,964 & 2,791 & 2,395 & 3,061 & 75 & 67 & Mains Allocation \\
\hline 9 & Net Revenue Deficiency & 7,252,348 & 4,951,957 & 1,074,079 & 749,109 & 455,832 & 32,090 & \((10,719)\) & \\
\hline 10 & Percent & 7.8418\% & 7.5093\% & 9.9850\% & 8.0997\% & 8.6899\% & 6.0983\% & -1.4078\% & Line 9 / Line 3 \\
\hline 11 & Increase Under Proposed Rates & 7,252,427 & 4,950,445 & 1,075,738 & 732,848 & 419,856 & 48,277 & 25,264 & \\
\hline 12 & Percent & 7.8419\% & 7.5070\% & 10.0004\% & 7.9239\% & 8.0040\% & 9.1746\% & 3.3181\% & Line 11 / Line 3 \\
\hline 13 & Increase Under Proposed Rates (Incl LV Credit) & 7,278,779 & 4,968,408 & 1,078,528 & 735,243 & 422,916 & 48,352 & 25,332 & Section 17 \\
\hline 14 & Incremental Taxes at 39.55\% & 2,878,757 & 1,965,005 & 426,558 & 290,789 & 167,263 & 19,123 & 10,019 & Line \(13 \times 39.55 \%\) \\
\hline 15 & Incremental Return & 4,400,022 & 3,003,403 & 651,970 & 444,454 & 255,653 & 29,229 & 15,313 & Line 13 - Line 14 \\
\hline 16 & Return Under Proposed Rates & 9,868,403 & 7,136,161 & 1,075,065 & 847,396 & 717,804 & 47,840 & 44,137 & Line 15 + Line 18 \\
\hline 17 & Rate of Return Under Proposed Rates & 7.5220\% & 7.5210\% & 7.5290\% & 7.4357\% & 7.3008\% & 9.4562\% & 14.8311\% & Line 16 / Line 2 \\
\hline 18 & Return Under Current Rates & 5,468,381 & 4,132,758 & 423,095 & 402,942 & 462,151 & 18,611 & 28,824 & (Line \(2 \times 7.52 \%\) ) - Line \(7 \times(100-39.55 \%)\) \\
\hline 19 & Rate of Return Under Current Rates & 4.1682\% & 4.3557\% & 2.9631\% & 3.5357\% & 4.7005\% & 3.6788\% & 9.6856\% & Line 18 / Line 2 \\
\hline 20 & \multicolumn{2}{|l|}{Bypass Revenue Rider Allocation} & & & & & & & \multirow[t]{5}{*}{Line 8} \\
\hline 21 & Residential & 68.17\% & & & & & & & \\
\hline 22 & Small Commercial & 10.59\% & & & & & & & \\
\hline 23 & Small Volume & 9.37\% & & & & & & & \\
\hline 24 & Large Volume & 11.87\% & & & & & & & \\
\hline 25 & \multicolumn{2}{|l|}{Rate of Return Under Current Rates} & \multicolumn{6}{|c|}{Rate of Return Under Proposed Rates} & \\
\hline 26 & Residential + Small Commercial & 4.1735\% & & Residential + & all Commercia & & & 7.5221\% & \\
\hline 27 & Small Volume (Firm + Interruptible + Full Margin Trans.) & 3.5418\% & & Small Volume & irm + Interruptib & + Full Margin T & & 7.5216\% & \\
\hline 28 & \multirow[t]{2}{*}{Large Volume (Firm + Interruptible + Full Margin Trans.)
Total} & 4.8470\% & & Large Volume & irm + Interruptib & + Full Margin T & & 7.5220\% & \\
\hline 29 & & 4.1682\% & & Total & & & & 7.5220\% & \\
\hline
\end{tabular}

Black Hills Energy - Kansas Exhibit_(TJS-12)
Allocation of Cost of Service Test Year Ended December 31, 2013

Table 2
Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Line Number} & \multirow[b]{2}{*}{Description} & Total & & \multicolumn{3}{|c|}{Firm and Transportation} & \multicolumn{2}{|l|}{Interruptible} & \multirow[b]{2}{*}{Basis of Allocation or Reference} \\
\hline & & Gas Utility Adjusted & Residential Service & Small Commercial & Small Volume & Large Volume & Small Volume & Large Volume & \\
\hline & & \[
\begin{gathered}
\$ \\
\text { Exhibit TJS-11 }
\end{gathered}
\] & \$ & \$ & \$ & \$ & \$ & \$ & \\
\hline 1 & Total Cost of Service & & & & & & & & \\
\hline 2 & Gas Supply & & & & & & & & \\
\hline 3 & Demand & 334,592 & 243,430 & 47,183 & 33,572 & 10,407 & 0 & 0 & 50\% Peak (Sales), 50\% Firm Winter Period Sales \\
\hline 4 & Commodity & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Annual Sales \\
\hline 5 & Total Gas Supply & 334,592 & 243,430 & 47,183 & 33,572 & 10,407 & 0 & 0 & Line 3 + Line 4 \\
\hline 6 & Transmission & & & & & & & & \\
\hline 7 & Demand & 2,275,614 & 1,300,214 & 256,609 & 297,552 & 407,376 & 6,917 & 6,947 & 50\% Peak, 50\% Winter Period Throughput \\
\hline 8 & Commodity & 2,759,953 & 1,341,920 & 243,047 & 377,125 & 749,073 & 17,980 & 30,809 & Annual Throughput \\
\hline 9 & Total Transmission & 5,035,568 & 2,642,133 & 499,656 & 674,677 & 1,156,449 & 24,897 & 37,755 & Line \(7+\) Line 8 \\
\hline 10 & Distribution & & & & & & & & \\
\hline 11 & Demand & 7,159,474 & 4,090,695 & 807,336 & 936,151 & 1,281,675 & 21,762 & 21,855 & 50\% Peak, 50\% Winter Period Throughput \\
\hline 12 & Customer & 7,025,718 & 6,052,610 & 699,566 & 210,328 & 45,986 & 13,709 & 3,520 & Distribution - Customer \\
\hline 13 & Total Distribution & 14,185,191 & 10,143,305 & 1,506,901 & 1,146,479 & 1,327,661 & 35,471 & 25,375 & Line 11 + Line 12 \\
\hline 14 & Services & 10,550,151 & 9,088,885 & 1,050,501 & 315,838 & 69,054 & 20,586 & 5,285 & Services \\
\hline 15 & Meters and Regulators & 10,697,208 & 7,259,633 & 1,290,884 & 1,513,632 & 496,407 & 98,657 & 37,995 & Meters \& Regulators \\
\hline 16 & Customer Accounting & 8,803,166 & 6,932,951 & 1,232,794 & 385,472 & 210,697 & 25,125 & 16,127 & Customer Accounting \\
\hline 17 & Direct & & & & & & & & \\
\hline 18 & Forfeited Discounts & \((444,424)\) & \((444,424)\) & & & & & & Direct - Residential \\
\hline 19 & Total Cost of Service & 49,161,451 & 35,865,914 & 5,627,919 & 4,069,671 & 3,270,675 & 204,736 & 122,536 & Sum of Lines 5,9,13,14,15,16 and 18 \\
\hline
\end{tabular}
```

Black Hills Energy - Kansas
Allocation of Rate Base
Test Year Ended December 31, 2013

```

Exhibit_(TJS-12)
Table 3
Page 1 of 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & [ A ] & [B] & [C] & \multicolumn{2}{|l|}{[D] [E]} & [F] & [G] & [H] & [1] \\
\hline & \multirow[b]{2}{*}{Description} & Total & & & and Transport & & Interru & & \\
\hline Line Number & & Gas Utility Adjusted & Residential Service & Small Commercial & Small Volume & Large Volume & Small Volume & Large Volume & Basis of Allocation or Reference \\
\hline \multicolumn{10}{|c|}{} \\
\hline 1 & \multicolumn{9}{|l|}{Rate Base} \\
\hline 2 & \multicolumn{9}{|l|}{Gas Supply} \\
\hline 3 & Demand & 2,983,542 & 2,170,655 & 420,724 & 299,362 & 92,801 & 0 & 0 & 50\% Peak (Sales), \(50 \%\) Firm Winter Period Sales \\
\hline 4 & Commodity & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Annual Sales \\
\hline 5 & Total Gas Supply & 2,983,542 & 2,170,655 & 420,724 & 299,362 & 92,801 & 0 & 0 & Line 3 + Line 4 \\
\hline 6 & \multicolumn{9}{|l|}{Transmission} \\
\hline 7 & Demand & 9,018,820 & 5,153,066 & 1,017,004 & 1,179,273 & 1,614,531 & 27,414 & 27,531 & 50\% Peak, 50\% Winter Period Throughput \\
\hline 8 & Commodity & 5,161,636 & 2,509,644 & 454,544 & 705,295 & 1,400,909 & 33,626 & 57,618 & Annual Throughput \\
\hline 9 & Total Transmission & 14,180,456 & 7,662,710 & 1,471,549 & 1,884,569 & 3,015,440 & 61,039 & 85,149 & Line 7 + Line 8 \\
\hline 10 & \multicolumn{9}{|l|}{Distribution} \\
\hline 11 & Demand & 28,374,755 & 16,212,430 & 3,199,671 & 3,710,197 & 5,079,593 & 86,249 & 86,616 & 50\% Peak, 50\% Winter Period Throughput \\
\hline 12 & Customer & 27,844,647 & 23,987,980 & 2,772,551 & 833,581 & 182,253 & 54,332 & 13,949 & Distribution - Customer \\
\hline 13 & Total Distribution & 56,219,402 & 40,200,410 & 5,972,221 & 4,543,778 & 5,261,846 & 140,581 & 100,566 & Line 11 + Line 12 \\
\hline 14 & Services & 29,103,762 & 25,072,700 & 2,897,923 & 871,275 & 190,494 & 56,789 & 14,580 & Services \\
\hline 15 & Meters and Regulators & 25,998,253 & 17,643,650 & 3,137,335 & 3,678,697 & 1,206,456 & 239,774 & 92,341 & Meters \& Regulators \\
\hline 16 & Customer Accounting & 2,707,818 & 2,132,547 & 379,202 & 118,570 & 64,810 & 7,728 & 4,960 & Customer Accounting \\
\hline 17 & Direct & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Direct \\
\hline 18 & Total Rate Base & 131,193,233 & 94,882,673 & 14,278,954 & 11,396,251 & 9,831,846 & 505,912 & 297,596 & Sum of Lines 5,9,13,14,15,16 and 17 \\
\hline
\end{tabular}

\title{
Black Hills Energy - Kansa
}

Class Allocation Bases
Test Year Ended December 31, 2013

\(\begin{array}{cl}\text { Black Hills Energy - Kansas } & \text { Exhibit__(TJS-12) } \\ \text { Unit Cost of Service } & \text { Table } 5 \\ \text { Test Year Ended December 31, } 2013 & \text { Page } 1 \text { of } 1\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Line Number} & \multirow{3}{*}{Description} & \multirow[t]{2}{*}{Total Gas Utility Adjusted} & \multirow[b]{2}{*}{Residential Service} & \multicolumn{3}{|c|}{Firm and Transportation} & \multicolumn{2}{|l|}{Interruptible} & \multirow[b]{2}{*}{Basis of Allocation or Reference} \\
\hline & & & & Small Commercial & Small Volume & Volume & Small Volume & Large Volume & \\
\hline & & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \\
\hline 1 & \multicolumn{9}{|l|}{Other Gas Supply} \\
\hline 2 & Demand - \$ & 334,592 & 243,430 & 47,183 & 33,572 & 10,407 & 0 & 0 & Line 3 , Table 2 \\
\hline 3 & \$/therm & 0.0023 & 0.0035 & 0.0037 & 0.0017 & 0.0003 & 0.0000 & 0.0000 & Line 2 / Line 15 ,Table 4 \\
\hline 4 & Commodity - \$ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & Line 4 ,Table 2 \\
\hline 5 & \$/therm & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & Line 4 / Line 15 ,Table 4 \\
\hline 6 & Customer Related & 29,606,100 & 22,837,046 & 3,574,179 & 2,214,942 & 776,158 & 144,368 & 59,406 & Line 14 + Line 15 + Line \(16+\) Line 18, Table 2 \\
\hline 7 & \$/bill/month & 22.57 & 19.25 & 33.88 & 134.30 & 430.48 & 134.30 & 430.48 & Line 6 / Line 39 ,Table 4 / 12 \\
\hline 8 & Distribution - Customer & 7,025,718 & 6,052,610 & 699,566 & 210,328 & 45,986 & 13,709 & 3,520 & Line 12 ,Table 2 \\
\hline 9 & \$/bill/month & 5.36 & 5.10 & 6.63 & 12.75 & 25.51 & 12.75 & 25.51 & Line 8 / Line 15 , Table 4 \\
\hline 10 & Trans/Distr - Demand & 9,435,088 & 5,390,908 & 1,063,945 & 1,233,703 & 1,689,051 & 28,679 & 28,801 & Line 7 + Line 11, Table 2 \\
\hline 11 & \$/therm & 0.0652 & 0.0766 & 0.0835 & 0.0624 & 0.0430 & 0.0304 & 0.0178 & Line 10 / Line 15 , Table 4 \\
\hline 12 & Transmission - Commodity & 2,759,953 & 1,341,920 & 243,047 & 377,125 & 749,073 & 17,980 & 30,809 & Line 8 ,Table 2 \\
\hline 13 & \$/therm & 0.0191 & 0.0191 & 0.0191 & 0.0191 & 0.0191 & 0.0191 & 0.0191 & Line 12 / Line 15 , Table 4 \\
\hline 14 & Customer Costs - \$/bill.month & 27.93 & 24.35 & 40.51 & 147.05 & 455.99 & 147.05 & 455.99 & Line \(7+\) Line 9 \\
\hline 15 & Demand Costs - \$/therm & 0.0675 & 0.0801 & 0.0872 & 0.0641 & 0.0433 & 0.0304 & 0.0178 & Line 3 + Line 11 \\
\hline 16 & Commodity Costs - \$/therm & 0.0191 & 0.0191 & 0.0191 & 0.0191 & 0.0191 & 0.0191 & 0.0191 & Line 13 \\
\hline 17 & Customer Costs - \$ & 36,631,817 & 28,889,656 & 4,273,745 & 2,425,270 & 822,144 & 158,077 & 62,926 & Line 6 + Line 8 \\
\hline 18 & Demand Costs - \$ & 9,769,681 & 5,634,339 & 1,111,127 & 1,267,276 & 1,699,458 & 28,679 & 28,801 & Line \(2+\) Line 10 \\
\hline 19 & Commodity Costs - \$ & 2,759,953 & 1,341,920 & 243,047 & 377,125 & 749,073 & 17,980 & 30,809 & Line 12 \\
\hline 20 & Total Cost of Service - \$ & 49,161,451 & 35,865,914 & 5,627,919 & 4,069,671 & 3,270,675 & 204,736 & 122,536 & Sum of Lines 17 thru 19 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{[ A ]} & [B] & [C] & [D] & [E] & \multicolumn{2}{|l|}{[F] [G]} & [H] & [1] & \multicolumn{2}{|l|}{[J] [K]} & [L] & [M] & [ N ] \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Line Description}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Total } \\
\text { Company } \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{Residential} & \multicolumn{2}{|l|}{Small Commercial} & \multicolumn{4}{|c|}{Small Volume} & \multicolumn{4}{|c|}{Large Volume} & \multirow[b]{2}{*}{Reference} \\
\hline & & & & Sales & Transportation & Firm & Interruptible & Transportation & \[
\begin{gathered}
\hline \text { SV } \\
\text { Total } \\
\hline
\end{gathered}
\] & Firm (1) & Interruptible & Transportation & \[
\begin{gathered}
\hline \mathrm{LV} \\
\text { Total }
\end{gathered}
\] & \\
\hline \multicolumn{15}{|c|}{Units - Test Year, Current Rates} \\
\hline 2 & Number of Customers & 109,296 & 98,879 & 8,671 & 121 & 906 & 90 & 468 & 1,464 & 32 & 12 & 119 & 162 & Exhibit TJS-10 \\
\hline 3 & Throughput - therms & 144,684,598 & 70,347,245 & 12,508,905 & 232,318 & 11,843,867 & 942,550 & 7,926,091 & 20,712,508 & 4,853,509 & 1,615,074 & 34,415,039 & 40,883,622 & Exhibit TJS-10 \\
\hline 4 & Current Rates & & & & & & & & & & & & & \\
\hline 5 & Customer Charge - \$/month & & 16.00 & 22.75 & 22.75 & 40.00 & 40.00 & 40.00 & & 256.00 & 256.00 & 256.00 & & Current Tariff \\
\hline 6 & GSRS Factor - \$/month & & - & - & - & - & & - & & & - & & & \\
\hline 7 & Commodity Charge - \$/therm & & 0.14524 & 0.14524 & 0.14524 & 0.12500 & 0.12500 & 0.12500 & & 0.05900 & 0.05900 & 0.05900 & & Current Tariff \\
\hline 8 & Cost of Gas - \$/therm & & 0.49822 & 0.49612 & - & 0.50072 & 0.37519 & - & & 0.50145 & 0.38896 & - & & Exhibit TJS-10 \\
\hline 9 & Revenue Under Current Rates & & & & & & & & & & & & & \\
\hline 10 & Customer Charge - \$ & 22,584,373 & 18,984,768 & 2,367,092 & 32,897 & 434,880 & 43,000 & 224,840 & 702,720 & 97,024 & 35,328 & 364,544 & 496,896 & Line \(2 \times\) Line \(5 \times 12\) \\
\hline 11 & GSRS Charge - \$ & 2,229,412 & 1,693,992 & 296,394 & 4,132 & 117,190 & 11,753 & 70,012 & 198,955 & 4,664 & 2,570 & 28,706 & 35,940 & Exhibit TJS-10 \\
\hline 12 & Delivery Charge - \$ & 17,068,966 & 10,217,234 & 1,816,793 & 33,742 & 1,480,483 & 117,819 & 990,761 & 2,589,064 & 286,357 & 95,289 & 2,030,487 & 2,412,134 & Line \(3 \times\) Line 7 \\
\hline 13 & Margin - \$ & 41,882,751 & 30,895,994 & 4,480,279 & 70,770 & 2,032,553 & 172,572 & 1,285,613 & 3,490,738 & 388,045 & 133,188 & 2,423,738 & 2,944,970 & Line \(10+\) Line 12 \\
\hline 14 & Cost of Gas - \$ & 50,600,649 & 35,048,670 & 6,205,923 & - & 5,930,451 & 353,631 & - & 6,284,082 & 2,433,770 & 628,205 & - & 3,061,974 & Line \(3 \times\) Line 8 \\
\hline 15 & Total - \$ & 92,483,400 & 65,944,664 & 10,686,202 & 70,770 & 7,963,004 & 526,203 & 1,285,613 & 9,774,820 & 2,821,814 & 761,392 & 2,423,738 & 6,006,944 & Line \(13+\) Line 14 \\
\hline \multicolumn{15}{|l|}{16 Units - Test Year, Proposed Rates} \\
\hline 17 & Number of Customers & 109,296 & 98,879 & 8,671 & 121 & 906 & 90 & 468 & 1,464 & 32 & 12 & 119 & 162 & Line 2 \\
\hline 18 & Total Throughput - therms & 144,684,598 & 70,347,245 & 12,508,905 & 232,318 & 11,843,867 & 942,550 & 7,926,091 & 20,712,508 & 4,853,509 & 1,615,074 & 34,415,039 & 40,883,622 & Line 3 \\
\hline 19 & Proposed Rates & & & & & & & & & & & & & \\
\hline 20 & Customer Charge - \$/month & & 21.70 & 36.00 & 36.00 & 96.00 & 96.00 & 96.00 & & 400.00 & 400.00 & 400.00 & & \\
\hline 21 & GSRS Charge - \$ & & - & - & - & - & - & & & & - & - & & \\
\hline 22 & Commodity Charge - \$/therm & & 0.14355 & 0.14355 & 0.14355 & 0.12482 & 0.12482 & 0.12482 & & 0.06393 & 0.06393 & 0.06393 & & \\
\hline 23 & Cost of Gas - \$/therm & & 0.49822 & 0.49612 & - & 0.50072 & 0.37519 & - & & 0.50145 & 0.38896 & - & & \\
\hline 24 & Revenue Under Proposed Rates & & & & & & & & & & & & & \\
\hline 25 & Customer Charge - \$ & 32,008,804 & 25,748,092 & 3,745,728 & 52,056 & 1,043,712 & 103,200 & 539,616 & 1,686,528 & 151,600 & 55,200 & 569,600 & 776,400 & Line \(17 \times\) Line \(20 \times 12\) \\
\hline 26 & GSRS Charge - \$ & - & - & - & - & - & - & - & - & & - & - & & \\
\hline 27 & Delivery Charge - \$ & 17,126,375 & 10,098,347 & 1,795,653 & 33,349 & 1,478,352 & 117,649 & 989,335 & 2,585,335 & 310,285 & 103,252 & 2,200,153 & 2,613,690 & Line \(18 \times\) Line 22 \\
\hline 28 & Margin - \$ & 49,135,178 & 35,846,439 & 5,541,381 & 85,405 & 2,522,064 & 220,849 & 1,528,951 & 4,271,863 & 461,885 & 158,452 & 2,769,753 & 3,390,090 & Line \(25+\) Line 27 \\
\hline 29 & Cost of Gas - \$ & 50,600,649 & 35,048,670 & 6,205,923 & - & 5,930,451 & 353,631 & - & 6,284,082 & 2,433,770 & 628,205 & - & 3,061,974 & Line \(18 \times\) Line 23 \\
\hline 30 & Total - \$ & 99,735,827 & 70,895,108 & 11,747,304 & 85,405 & 8,452,515 & 574,480 & 1,528,951 & 10,555,945 & 2,895,655 & 786,656 & 2,769,753 & 6,452,064 & Line \(28+\) Line 29 \\
\hline \multicolumn{15}{|l|}{31 Difference} \\
\hline 32 & Customer Charge - \$ & 9,424,431 & 6,763,324 & 1,378,636 & 19,160 & 608,832 & 60,200 & 314,776 & 983,808 & 54,576 & 19,872 & 205,056 & 279,504 & Line 25 - Line 10 \\
\hline 33 & GSRS Charge - \$ & \((2,229,412)\) & \((1,693,992)\) & \((296,394)\) & \((4,132)\) & \((117,190)\) & \((11,753)\) & \((70,012)\) & \((198,955)\) & \((4,664)\) & \((2,570)\) & \((28,706)\) & \((35,940)\) & Line 26 - Line 11 \\
\hline 34 & Delivery Charge - \$ & 57,408 & \((118,887)\) & \((21,140)\) & (393) & \((2,132)\) & (170) & \((1,427)\) & \((3,728)\) & 23,928 & 7,962 & 169,666 & 201,556 & Line 27 - Line 12 \\
\hline 35 & Cost of Gas - \$ & - & - & - & - & - & - & , & - & - & - & - & - & Line 29 - Line 14 \\
\hline 36 & Total - \$ (2) & 7,252,427 & 4,950,445 & 1,061,102 & 14,635 & 489,510 & 48,277 & 243,338 & 781,125 & 73,840 & 25,264 & 346,016 & 445,120 & Sum of Lines 32 through 3 \\
\hline \multicolumn{15}{|l|}{37 Percent Difference} \\
\hline 38 & Customer Charge - \% & 41.7\% & 35.6\% & 58.2\% & 58.2\% & 140.0\% & 140.0\% & 140.0\% & 140.0\% & 56.3\% & 56.3\% & 56.3\% & 56.3\% & \\
\hline 39 & Delivery Charge - \% & 0.3\% & -1.2\% & -1.2\% & -1.2\% & -0.1\% & -0.1\% & -0.1\% & -0.1\% & 8.4\% & 8.4\% & 8.4\% & 8.4\% & \\
\hline 40 & Cost of Gas - \% & 0.0\% & 0.0\% & 0.0\% & n/a & 0.0\% & 0.0\% & n/a & 0.0\% & 0.0\% & 0.0\% & n/a & 0.0\% & \\
\hline 41 & Total - \% & 7.8\% & 7.5\% & 9.9\% & 20.7\% & 6.1\% & 9.2\% & 18.9\% & 8.0\% & 2.6\% & 3.3\% & 14.3\% & 7.4\% & \\
\hline
\end{tabular}

42 (1) Includes Wholesale customers.
43 (2) Additional customer charge revenues from Large Volume Negotiated Rate customers```

