BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS

In the Matter of the Application of The)
Empire District Electric Company to) Docket No. 19-EPDE-223-RTS
Make Certain Changes in Its Charges)
for Electric Service.)

DIRECT TESTIMONY

PREPARED BY

ROBERT H. GLASS, PHD

UTILITIES DIVISION

KANSAS CORPORATION COMMISSION

May 13, 2019

1		I. STATEMENT OF QUALIFICATIONS
2	Q.	What is your name?
3	A.	Robert H. Glass.
4	Q.	By whom and in what capacity are you employed?
5	A.	I am employed by the Kansas Corporation Commission (KCC or Commission) as
6		the Chief of Economics and Rates Section within the Utilities Division.
7	Q.	What is your business address?
8	A.	1500 S.W. Arrowhead Road, Topeka, Kansas, 66604-4027.
9	Q.	What is your educational background and professional experience?
10	A.	I have a B.A. from Baker University with a major in history. I also have an M.A.
11		and a Ph.D. in economics from the University of Kansas. For 22 years prior to my
12		employment at the Commission, I was employed at the University of Kansas by the
13		Institute for Business and Economic Research, which later became the Institute for
14		Public Policy and Business Research. My primary duty was performing economic
15		research.
16	Q.	Have you previously submitted testimony before this Commission?
17	A.	Yes. I provided testimony as a Staff consultant for Docket Nos. 91-KPLE-140-
18		SEC and 97-WSRE-676-MER. As an employee of the Commission, I have testified
19		in numerous rate case and non-rate case dockets.
20		II. INTRODUCTION
21	Q.	What is the purpose of your testimony?
22	A.	The purpose of my testimony is to provide Staff's analysis of The Empire District
23		Electric Company's (Empire) Revenue Stabilization Rider, to provide Staff's

proposed revenue allocation and rate design based on Staff's proposed revenue
 requirement, and to provide Staff's proposed Income Tax Credit allocation to
 individual customers.

4

Q.

How is your testimony organized?

A. My testimony is divided into three basic sections: analysis of Empire's Revenue
Stabilization Rider, explanation of Staff's revenue allocation to rate classes and rate
design, and Staff's suggested Income Tax Credit allocation to individual customers.

8 Q. What are your recommendations?

9 A. I am recommending that the Commission reject the Revenue Stabilization Rider
10 because it conflicts with previous Commission decoupling policy and because it is
11 unnecessary at this time. I recommend the Commission accept Staff's proposed
12 revenue allocation and rate design. And I recommend the Commission accept
13 Staff's proposed Income Tax Credit allocation to individual customers.

14

III. ANALYSIS

15 **Revenue Stabilization Rider**

16 *Empire's Decoupling Proposal—The Revenue Stabilization Rider*

17 Q. What is Empire's Proposed Revenue Stabilization Rider?

A. In a confusing choice of names, the Revenue Stabilization Rider is a decoupling
mechanism designed to break the link between energy consumption and revenue
collection by Empire; and the Revenue Stabilization Rider is also the name of the
instrument, the rider, used to implement the decoupling mechanism. In order to
add some clarity to my discussion, when I am referring to the Revenue Stabilization
Rider as a decoupling mechanism, I will call it the Decoupling Mechanism and

when I am referring to the Revenue Stabilization Rider as the implementing
 instrument, I will call it the Rider.

Q. How does the Decoupling Mechanism break the link between consumption and revenue collection?

5 A. There are two basic components of the Decoupling Mechanism—a base line for 6 revenue collection and the Rider, which is used as a true-up instrument. The base 7 line would be the revenue requirement approved by the Commission in this rate The Rider would either reduce the customers' bills if Empire is over 8 case. 9 recovering its revenue requirement or increase the customers' bills if Empire is 10 under recovering its revenue requirement. Thus, the Decoupling Mechanism is 11 designed to ensure the revenue collected by Empire is trued-up to eventually equal 12 the approved revenue requirement.

13 Q. Why is Empire asking for the Decoupling Mechanism?

- A. Empire states the Decoupling Mechanism is needed because of the "basic
 misalignment between the structure of utility costs and the structure of utility
 rates."¹
- 17 **Q.** What is the misalignment?
- A. Most electric utility costs are fixed—the costs do not vary with changes in electric
 usage—while most revenue for Residential and Small Commercial customers is
 collected in the energy charge. As a result, most fixed costs are collected by a
 charge that varies with electric usage. Empire contends this is "the basic

¹ Timothy Lyons, Direct Testimony, Docket No. 19-EPDE-223-RTS, p. 41.

- misalignment between the structure of utility costs and the structure of utility
 rates."²
- 3 Q. What rate classes does Empire propose be part of the Decoupling Mechanism?
- 4 A. All three Residential rate classes—Residential General, Residential Water Heating,
- 5 and Residential Space Heating-and two Small Commercial rate classes-
- 6 Commercial Buildings and Commercial Space Heating.
- 7 Q. What are the effects of the misalignment?
- 8 A. Empire identifies three effects of the misalignment between utility costs and utility
- 9 rates:
- Since the recovery of fixed costs is dependent upon energy usage, changes in
 customer behavior can create over or under recovery of the fixed costs.
- 13 2. Empire's total energy usage has declined over the past decade causing the
 14 Company to under recover its revenue requirement, and thus preventing Empire
 15 from encouraging customers to be as energy efficient as possible.
 16
- 17
 3. The under recovery violates "a basic principle of establishing rates that are fair,
 18 just and reasonable."³
- 19

20 Q. Will the Decoupling Mechanism correct the misalignment?

- A. The Decoupling Mechanism will not change the misalignment between utility costs and utility rates. To eliminate the misalignment, fixed charges would need to be significantly increased. Instead, the Decoupling Mechanism compensates for the effects of the misalignment. The Decoupling Mechanism eventually eliminates the over or under recovery of the revenue requirement with the true-up Rider. As a result, Empire would be indifferent to reductions in electric usage because of energy
 - ² Ibid.

³ *Ibid.*, pp. 43-44.

- efficiency or distributed generation. And because Empire would be recovering its
 revenue requirement, Empire believes its rates would then be fair, just, and
 reasonable.
- 4 Q.

How will the Decoupling Mechanism benefit Empire?

A. The Decoupling Mechanism would ensure that Empire collects its Commission
 approved revenue requirement.⁴

7 Q. How does Empire think the Decoupling Mechanism will benefit its customers?

8 A. Empire claims the Decoupling Mechanism will stabilize customers' electric bills.⁵

9 Q. For convenience, would you please summarize the Revenue Stabilization 10 Rider?

11 A. The Revenue Stabilization Rider is a decoupling mechanism designed to break the 12 link between customer energy usage and Empire's revenue collection. Empire feels 13 it needs the Decoupling Mechanism because utility costs are misaligned with utility 14 rates. The Decoupling Mechanism uses a rider to true-up revenue collection, which 15 ensures that revenue collection is eventually equal to the revenue requirement. The 16 Decoupling Mechanism does not eliminate the misalignment of costs and rates, but 17 it would eliminate over or under revenue collection by Empire. Additionally, it 18 solves Empire's alleged problem of declining electric usage over the last decade 19 and it makes Empire indifferent to improved energy efficiency or distributed generation. Thus, the Decoupling Mechanism could ensure Empire's revenue 20 21 collection meets its revenue requirement and could provide customers with stable 22 electric bills.

⁴ *Ibid.*, Exhibit TSL-11, p. 1.

⁵ Ibid.

1 The Commission's Stated Decoupling Policy

2 Q. Has Commission established a policy on decoupling mechanisms?

A Yes. In the Final Order for Docket No. 08-GIMX-441-GIV ("08-441"), the
Commission established its policy on cost recovery and incentives for energy
efficiency programs. As part of that policy, the Commission outlined when and
how decoupling should be implemented.

7 Q. What decoupling policy did the Commission adopt?

A. The 08-441 Final Order is littered with references to decoupling—more than 40
references are made to decoupling in the order. The decoupling discussion focused
primarily on the throughput incentive and the conflict between utility's profit
maximizing motivation and the negative consequence of effective energy
efficiency programs on utility profit.⁶

But the Commission did step outside the confines of energy efficiency policy to discuss the unique problem faced by natural gas utilities. Since the mid-1980s, average customer usage of natural gas has declined. Because natural gas rates are designed to recover a large part of the utility's fixed cost in the volumetric rate, natural gas utilities have faced a continuing problem collecting their approved revenue requirement. In response to this problem, the Commission stated it will

⁶ The throughput incentive is a motivation for energy utilities to encourage customers to use more energy. It results from the structure of most rate designs, particularly residential rate designs that contain a fixed charge that does not cover the utility's fixed cost. As a result, the utility collects a large part of its fixed costs in its volumetric rate. This rate design motivates utilities to encourage customers to use more energy because its short run profit (marginal revenue minus marginal cost) will increase when customers increase their energy usage. Energy efficiency advocates also use the term throughput disincentive to describe the same phenomenon because the utility's own profit maximizing directive is contrary to encouraging energy efficiency.

1		consider decoupling proposals from natural gas utilities outside of the confines of
2		energy efficiency proposals on a case-by-case basis. ⁷
3		In the same order, the Commission made it clear it would almost certainly not
4		extend the same consideration to electric utilities that it would to natural gas
5		utilities:
6 7 8 9 10 11		[T]he Commission is highly unlikely to address a decoupling proposal without a demonstrated connection to an energy efficiency program application or to existing programs The [electric] utility must demonstrate that decoupling makes economic sense in the context of the utility's energy efficiency program or suite of programs. ⁸
12	Q.	Please summarize the Commission's decoupling policy.
13	A.	The decoupling policy outlined in 08-441 Final Order views decoupling as a
14		potential cost recovery mechanism, acceptable in principle, which removes the
15		throughput incentive that incentivizes utilities to encourage customers to increase
16		energy usage.
17		Outside of energy efficiency programs, the Commission will consider, on a
18		case-by-case basis, the use of decoupling by natural gas utilities to reduce the
19		impact of declining per customer volumetric usage. But this exemption of
20		decoupling outside of energy efficiency programs for natural gas utilities almost
21		certainly does not apply to electric utilities.
22	Q.	Has the Commission consistently maintained its 08-441 decoupling policy?
23	A.	Yes. In the two PURPA compliance dockets, Docket Nos. 09-GIME-360-GIE
24		("09-360") and 09-GIMG-361-GIG ("09-361"), the Commission confirmed its 08-

 $^{^7}$ Final Order, Docket No. 08-GIMX-441-GIV, November 17, 2008, ¶¶ 57-60. 8 Ibiid., ¶ 70.

441 decoupling policy. In fact, the Commission attached the 08-441 Final Order to
 the 09-361 Final Order.⁹

3 Additionally, in Docket No. 16-KCPE-446-TAR ("KEEIA") Staff proposed a 4 decoupling mechanism consistent with the 08-441 decoupling policy in contrast to the cost recovery mechanisms proposed by KCP&L.¹⁰ The Commission in the 5 6 Final Order for the KEEIA docket found "Staff's proposal is consistent with 7 KEEIA and traditional ratemaking principles and is, therefore, in the public interest."¹¹ Consistent with the 08-441 decoupling policy, the decoupling 8 9 mechanism proposed by Staff and accepted by the Commission was tied to a 10 portfolio of energy efficiency programs. But the current docket does not have any

11 tie to energy efficiency programs.

12 Staff's Analysis of the Revenue Stabilization Rider

13 Q. What is Staff's recommendation concerning the Revenue Stabilization Rider?

14 A. Staff recommends the Commission reject the Revenue Stabilization Rider.

15 Q. Why does Staff oppose the Decoupling Mechanism?

- 16 A. Staff has two objections to Empire's proposed Decoupling Mechanism.
- The Commission stated in the 08-441 Final Order that it would be "highly unlikely"
 for the Commission to approve a decoupling mechanism outside of an "energy efficiency [program] or suite of programs." Since Empire has not proposed an energy efficiency program in the current docket, a key Commission criterion for considering a decoupling mechanism is missing.
- 22
- 23 2. Staff does not believe that Empire has a demonstrated need for the decoupling
 24 mechanism it is proposing in the current docket.

⁹ Order Addressing PURPA Integrated Resource Planning and Rate Design Modifications Standards and Setting Roundtable To Address Smart Grid Standards, Docket No. 09-GIME-360-GIE, ¶ 73, and Order Addressing PURPA Standards and Closing Docket, Docket No. 09-GIMG-361-GIG, pp. 15-16.

 ¹⁰ Robert Glass, Cross-Answering Testimony, Docket No. 16-KCPE-446-TAR, August 15, 2016, pp. 2-18.
 ¹¹ Final Order, 16-KCPE-446-TAR, ¶ 116.

2 Q. Please explain why, in the 08-441 Final Order, the Commission treated the 3 issue of decoupling differently for natural gas and electric utilities.

- 4 The Commission noted that natural gas utilities confronted declining per customer A. 5 usage, which limited their ability to recover their full revenue requirement. In contrast, electric utilities did not face declining per customer usage. As a result, 6 7 the Commission stated it would consider decoupling for natural gas utilities outside 8 the realm of energy efficiency programs while the Commission stated it "[for 9 electric utilities, it] is highly unlikely to address a decoupling proposal without a 10 demonstrated connection to an energy efficiency program application or to existing programs."12 11
- Q. But doesn't Empire claim to currently face the same revenue collection
 problem the Commission ascribed to natural gas utilities in the 08-441 Docket?
- 14 A. Yes. As outlined above, Empire claims to confront declining revenue collection.

15 Q. Does Empire have declining revenue collection?

1

- A. It depends on the time period analyzed. Empire notes "Residential General MWh
 sales have decreased by 5.8 percent since 2007 while the number of customers has
 decreased by 10.4 percent."¹³
- However, if the last three to four years are considered, it is not clear that Empire
 has declining revenues, at least for the rate classes it has designated for the
 Decoupling Mechanism. Figure 1 below illustrates the monthly revenue collection
 for the five rate classes that Empire wishes to be part of the Decoupling Mechanism.

¹² Final Order, Docket No. 08-GIMX-441-GIV, November 17, 2008, ¶ 57-60 & 70.

¹³ Timothy Lyons, Direct Testimony, Docket No. 19-EPDE-223-RTS, p. 46. Staff notes that if sales decreased 5.8 percent and the number of customers decreased 10.4 percent, then per customer sales actually increased during this period.

- 1 Figure 1 shows the decline in base rate revenue from July 2011 to July 2015, but
- 2 base rate revenue seems to have stabilized after July 2015.

Direct Testimony Prepared by Robert H. Glass, PhD Docket No. 19-EPDE-223-RTS

1

2

1Table 1 below contains the annual base rate revenue for the rate classes selected2for the Decoupling Mechanism. As the graph above suggested, the table confirms3the base rate stabilization that has taken place in the last few years.

4

Total Annual E	Base Rate Revenu	e for the
Decoupling I	Mechanism Rate	Classes
	Total Base Rate	Percentage
Year	Revenue	Change
July 2011-June 2012	\$5,794,944	
		0.11%
July 2012-June 2013	\$5,801,171	
		-2.57%
July 2013-June 2014	\$5,652,274	
		-4.94%
July 2014-June 2015	\$5,373,268	
		-4.59%
July 2015-June 2016	\$5,126,791	
		4.40%
July 2016-June 2017	\$5,352,617	
		2.00%
July 2017-June 2018	\$5,459,559	
NOTE: The table conta	ins annual base rate	revenue for the
five classes that are pa	art of the Decoupling	Mechanism:
Residential General, W	/ater Heating, and Sp	ace Heating, and
Commercial Buildings a	and Commercial Spac	e Heating.

Table 1

5

6 Q. Could better weather over the past few years account for the base rate revenue 7 stabilization?

8 A. Better weather is a possible explanation for the stabilization. The best method for

- 9 checking the possibility of favorable weather being the cause of the stabilization is
- 10 to weather normalize the data. Although it is possible to directly weather normalize

1	revenue, it is easier and more accurate to weather normalize electric usage, and as
2	one would expect, the time path of base rate revenue follows the path of electric
3	usage for the five rate classes selected for the Decoupling Mechanism. I used
4	Staff's weather normalization method and applied it to all the available monthly
5	billing determinant data—July 2011 to June 2018. ¹⁴
6	Figure 2 below has two stacked graphs representing the usage patterns of the
7	five rate classes Empire selected for the Decoupling Mechanism for the period June
8	2015 through June 2018. This period was selected because it is during this period
9	that the stabilization took place.
10	The top graph in Figure 2 has actual total electric usage and the bottom graph
11	has weather normalized electric usage for the same period. By stacking the graphs,
12	the reader can see the effect of weather normalization on the actual data. The top
13	graph of actual electric usage shows the same pattern for the shortened period of
14	June 2015 through June 2018 that Figure 1 shows for revenue collection. The
15	weather normalized electric usage data in the bottom graph generally shows a
16	stabilized pattern of usage but not the upward swing during the last two years that
17	the raw data shows. ¹⁵

18

 ¹⁴ For an explanation of Staff's Weather Normalization Method see Darren Prince, Direct Testimony, Docket No. 19-EMPE-223-RTS.

of the Decoupling Mechanism: Residential General, Water Heating, and Space Heating, and Commercial Buildings and Commercial Space Heating.

2

1Q.Please explain why May 2018 in the bottom graph has an unexpected2downward spike?

A. The downward spike is a result of the extreme weather in April and May 2018
coupled with the structure of our weather normalization equations. Additionally,
May is historically the bottom of the first half of the year's electric usage cycle,
which makes the spike more noticeable. A more detailed description of the causes

7 of the spike are presented in an appendix to this testimony in Appendix RHG-1.

Q. Is there any other evidence the energy usage for the rate classes selected for the Decoupling Mechanism is more stable than it superficially appears?

10 A. Yes. Table 2 below compares the annual actual and weather normalized energy 11 usage for the rates that would be part of the Decoupling Mechanism. The weather 12 normalized annual energy use shows a slight decline in energy use by the rate 13 classes selected for the Decoupling Mechanism, but the decline is not continuous 14 or dramatic. Thus, the decline in energy usage appears to be more driven by 15 weather than by actual decline in normal usage.

Table 2

Annual Energy Us	age for the Rate Mee	e Classes Se chanism	lected for the De	ecoupling
Maria	Actual Energy	Percentage	Weather Normed	Percentage
Year	Use	Change	Energy Use	Change
July 2011-June 2012	132,702,030		129,231,856	
		2.08%		0.72%
July 2012-June 2013	135,460,917		130,166,777	
		0.93%		-0.82%
July 2013-June 2014	136,715,059		129,098,151	
		-5.92%		-1.28%
July 2014-June 2015	128,626,487		127,446,169	
		-6.00%		-0.85%
July 2015-June 2016	120,907,468		126,369,125	
		4.22%		1.92%
July 2016-June 2017	126,007,176		128,795,828	
		3.48%		-1.71%
July 2017-June 2018	130,394,077		126,591,770	

NOTE: The table contains annual base rate revenue for the five classes that are part of the Decoupling Mechanism: Residential General, Water Heating, and Space Heating, and Commercial Buildings and Commercial Space Heating.

2

3 Q. What is Staff's recommendation for Empire's proposed Decoupling
 4 Mechanism?

A. Staff recommends the Commission reject implementing Empire's proposed
Decoupling Mechanism for two reasons. First, the Commission made clear in its
08-441 Final Order and in its orders since then it saw little reason for an electric
utility to have a decoupling mechanism outside of energy efficiency programs.
Second, given the slight nature of the decline in normal electricity usage since July

1

1		2011 for the rate classes Empire has selected for the Decoupling Mechanism, Staff
2		believes Empire has not shown a need for the decoupling mechanism.
3	<u>Rate</u>	<u>Design</u>
4	Foun	dations for Rate Design
5	Q.	What are the foundations underlying most rate designs?
6	А.	The foundations underlying most regulated utility rate designs are the billing
7		determinants and the Class Cost of Service (CCOS).
8	Billin	g Determinants
9 10	Q.	Please explain what billing determinants are and why they are important in a rate case.
11	А.	Billing determinants consist of all the data needed to generate existing and proposed
12		revenues. They include the number of customers, demand, and volumes used by
13		rate block, along with the tariff rates. Billing determinants are essential to
14		constructing a proof of revenue, which demonstrates that the company's revenue
15		requirement can be recovered and provides a comparison of the revenue effect of
16		existing rates and proposed rates.
17	Q.	Are Staff's and Empire's Billing Determinants the same?
18	А.	No. Staff's weather normalization adjustment is different than Empire's.
19		Additionally, Staff incorporated a customer annualization adjustment, and Staff
20		made other adjustments to Empire's filed customer electric usage. Staff Witness
21		Darren Prince provides more details explaining why Staff's billing determinants
22		differ from Empire's.

1 Class Cost of Service

2 Q. What is the purpose of a CCOS study?

A. Ultimately, a CCOS is a starting point and guide in rate design by estimating the
cost to serve different rate classes. A CCOS study allocates to a utility's customers
the costs incurred in providing electricity to those same customers. Since electric
rates are set for classes of customers, the CCOS study allocates the cost of service
to particular rate classes.

8 The CCOS study broadly informs the rate analyst how much it costs to serve 9 each class. Thus, using a CCOS study as a starting point and guide for class 10 allocation of the revenue requirement ensures the rate analyst is beginning the rate 11 design process by employing the principle of cost causation. The link between cost 12 causation and a CCOS study is the impetus for using a CCOS study for revenue 13 allocation and rate design. However, CCOS studies do have limitations.

First, CCOS studies are an art; they are not a science. A substantial number of
subjective judgments must go into the production of any CCOS study.

Second, because all CCOS studies are based on allocation mechanisms that are
approximations of structural relationships, the CCOS studies must, themselves, be
viewed as approximations.

19 Third, the approximations of the structural relationships are not based on 20 statistical theory (for the most part) so determining a confidence interval using 21 statistical techniques is not possible. Further, because of the size and complexity, 22 only crude sensitivity analysis is possible. Therefore, it is difficult to get a handle 23 on the accuracy of the approximation using sensitivity analysis. Thus, we are left

1		knowing that the cost allocation from a CCOS study is an approximation, but we
2		cannot know precisely the numerical bounds of the approximation.
3		Fourth, a CCOS is a static snapshot of a dynamic process. Over time, the
4		structural cost relationships have changed and are expected to change in the future.
5		Thus, a rate analyst should be cautious when using a CCOS study to help determine
6		class revenue allocations.
7	Alloc	ation of the Revenue Requirement to Base Rates
8 9	Q.	How large is the change in revenue requirement Staff is proposing in this docket?
10	A.	Staff is proposing a \$340,082 decrease in Empire's base revenue requirement. ¹⁶
11 12	Q.	How does Staff propose to allocate the decrease in revenue requirement among customer classes?
13	A.	Table 3 below illustrates Staff's proposed revenue requirement allocation. The
14		column labeled (e) has the allocated reduction for each class except the
15		Transmission Class, which does not receive any reduction. Column (f) has the
16		percent change in the class base rate revenue. Column (d) has the current class base
17		rate revenue for each class.
18 19	Q.	Why did Staff choose this allocation for the change in the revenue requirement?
20	A.	Staff used the class rates of return in Column (b) and the relative class rates of
21		return in Column (c) as a starting point and guide. The rates of return and relative

¹⁶ However, if the proposed Transmission Delivery Charge is accepted, then total revenue collection will increase because all transmission costs will be pulled out of the base rate revenue requirement and instead will be paid for through a new Transmission Delivery Charge.

- rates of return came from Staff's CCOS that is sponsored by Staff Witness Justin
- 2 Prentiss.
- 3

1

4

Rate Class	Class Rate of Return	Relative Rate of Return	C Ra	urrent Base Ite Revenue	(Re	Change in Revenue equirement	Percent Change
(a)	(b)	(c)		(d)		(e)	(f)
RESIDENTIAL							
General	6.83%	0.91	\$	4,919,155	\$	(54,523)	-1.1%
Water Heating	6.13%	0.82	\$	777,208	\$	(6,728)	-0.9%
Space Heating	5.10%	0.68	\$	2,264,139	\$	(13,794)	-0.6%
COMMERCIAL							
Buildings	13.81%	1.85	\$	1,843,780	\$	(89,317)	-4.8%
Space Heating	9.83%	1.32	\$	226,288	\$	(6 <i>,</i> 652)	-2.9%
OTHER							
General Power	12.52%	1.68	\$	2,930,254	\$	(139,114)	-4.7%
Total Electric Building	9.76%	1.31	\$	664,158	\$	(19,473)	-2.9%
Transmission	3.08%	0.41	\$	2,004,870	\$	-	0.0%
Lighting	7.98%	1.07	\$	590,201	\$	(10,480)	-1.8%
Municipal St Lighting			\$	170,772	\$	(3 <i>,</i> 032)	-1.8%
Private Lighting			\$	400,389	\$	(7,110)	-1.8%
Special Lighting			\$	18,532	\$	(329)	-1.8%
TOTAL	7.47%	1.00	Ś	16.220.052	Ś	(340.082)	-2.1%

Table 3

- 5
- 6 7

Q. What do the class rates of return and the relative class rates of return signify?

8 A. The purpose of a CCOS is to allocate costs among classes so that rates can be 9 constructed to reflect costs. The class rates of return and the relative class rates of 10 return distill the class cost implications of the CCOS down to two numbers for each 11 class. 1 The system-wide and the class rates of return are found by dividing net 2 operating revenue by the rate base. The class rate of return summarizes the 3 relationship between revenue generated by a class and the rate base allocated to that 4 class. The system-wide rate of return can then be used as a guide to determine 5 whether a class is generating as much revenue as it should relative to the amount of 6 rate base allocated to it.

7 The comparison among classes is made easier by dividing the class rate of 8 return for each class by the system-wide rate of return, which is shown at the bottom 9 of Column (b). The result of the calculation is the relative rate of return and it is 10 easily interpreted. If the relative rate of return is greater than one, then that 11 particular class is generating more revenue than the system-wide average. If the 12 relative rate of return is less than one, then that class is generating less revenue than 13 the system-wide average. Thus, the relative rate of return provides a quick guide 14 as to whether particular classes are providing too much revenue—the relative rate 15 of return is greater than one—or too little revenue—the relative rate of return is less 16 than one.

17 Q. How did Staff use the relative rates of return to allocate the increase in revenue 18 requirement?

A. Since Staff is proposing a decrease in base rate revenue requirement, Staff did not
want to give any rate class a rate increase. The relative rates of return indicate that
the Transmission Class had the lowest relative rate of return of any class making it
the worst performing class. As a result, it was not given a rate decrease—its rates
remained the same. The next worse performing class was the Residential Space

Heating Class which was given the smallest percent decrease. Staff continued in
 this manner giving more of a rate decrease to the classes that performed better—the
 higher the relative rate of return, the greater the rate decrease. The Commercial
 Buildings Class received the greatest decrease, 4.8%, because it was the best
 performing class.

6 Q. Did Staff apply gradualism in its revenue requirement allocation?

- 7 A. Yes. Staff gave all classes a class revenue requirement decrease except for the 8 worst performing class—The Power Transportation Class whose rates remained the 9 same. But Staff did not give each class the same percentage decrease in revenue 10 requirement. Instead, Staff gave slightly more of a decrease to the classes that 11 performed better—their relative rate of return was higher. If Staff had strictly 12 followed the CCOS, none of the Residential classes would have received a decrease 13 in their respective class revenue requirement. For these reasons, Staff believes its 14 revenue allocation adheres to the gradualism principle.
- 15 Rate Design for the Customer Classes
- 16 Q. What is the next step in rate design?
- A. The next step is developing rates for the classes so that each class will recover its
 class revenue requirement. This step ensures that Empire will have the opportunity
 to recover its total revenue requirement.
- 20Q.Did you follow any general principles when setting the rates for the different
classes?
- A. Yes. I followed two general guidelines. First, I increased the customer charge
 slightly for the rate classes that had a customer charge. Second, I put most of the

- rate decrease in the first block for those rate classes that had multiple volumetric
 blocks.
- 3 Q. Since there was a rate decrease, why did you increase the customer charge?

A. Empire witness Timothy Lyons in his direct testimony established that most of
Empire's costs are fixed costs.¹⁷ This evidence was part of the misalignment
argument made by Mr. Lyons for the Decoupling Mechanism. This argument has
been made by other electric and natural gas utilities. And Staff does not dispute
that utilities have a high level of fixed costs. The high percentage of fixed costs is
one of the reasons utilities are natural monopolies. Thus, Staff is sympathetic to
gradually raising customer charges even when rates are going down.

11Q.Why did you put most of the rate decrease in the first block of multiple12volumetric block rates?

13 A. Staff put most of the decrease in the first block for two reasons. First, Staff has for 14 several years argued for minimizing or eliminating multiple block rates. Declining 15 block rates are designed to encourage electric usage or to reflect the previous 16 electric utility regime of electric utilities dispatching their own generation for their 17 own customers. Since the Southwestern Power Pool's (SPP) Integrated 18 Marketplace now dispatches over the whole SPP Region, it makes little sense to tie 19 customer rates to a utility's generation pattern.

20 Second, Staff wants to make sure that all customers fully participate in the rate 21 decrease rather than having the high energy usage customers getting the majority 22 of the benefit of the rate decrease.

¹⁷ Timothy Lyons, Direct Testimony, Docket No. 19-EPDE-223-RTS, especially pages 42 through 44.

- 1 Q. Did you provide a Proof of Revenue for all the rate classes with Staff's 2 proposed rate design?
- 3 A. Yes. The Proof of Revenue is attached to this testimony as Exhibit RHG-2.
- 4 Rate Impact on Bills

5 Q. Did you investigate the change in Residential rates on Residential electric 6 bills?

7 A. Yes. Table 4 has the rate impact on the Residential General Class and Table 5 has 8 the rate impact on the Residential Space Heating Class. As indicated above, all of 9 the Residential Classes received a base rate decrease. However, more than base 10 rates go into calculating a customer's bill. Below the customer and energy charge 11 in Tables 4 and 5 there is a section titled Riders. Notice that for the current rates, 12 Ad Valorem Tax Surcharge (AVTS) and Asbury Environmental and Riverton Rider 13 (AERR) have a positive value but for proposed rates these riders are zero because 14 they have been incorporated into base rates. On the other hand, the Transmission 15 Delivery Charge (TDC) is zero in the current rates but it is positive in the proposed 16 rates. In addition, notice that the TDC is greater than the sum of the AVTS and 17 AERR. Thus, even though base rates are declining, the overall bill for Residential 18 customers will increase. The bill increase assumes the Commission will accept 19 Empire's proposed TDC that Staff is also supporting.

- 20 But the bill increase is relatively small. In particular, the bill impacts for both 21 Residential General and Residential Space Heating ranges from a 0.77% increase 22 to a 2.55% increase.
- 23

Table 4

Residential General													
Elecric Us	age	e in kWh		600 1000			2000			3000		4000	
Current Rate	S												
Customer Charge	\$	14.00	\$	14.00	\$	14.00	\$	14.00	\$	14.00	\$	14.00	
Energy Charge													
First 600 kWh	\$	0.06858	\$	41.15	\$	41.15	\$	41.15	\$	41.15	\$	41.15	
All Additional kWh	\$	0.06112	\$	-	\$	24.45	\$	85.57	\$	146.69	\$	207.81	
Riders													
AVTS	\$	0.00221	\$	1.33	\$	2.21	\$	4.42	\$	6.63	\$	8.84	
AERR	\$	0.00798	\$	4.79	\$	7.98	\$	15.96	\$	23.94	\$	31.92	
TDC	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	
ECA	\$	0.03038	\$	18.23	\$	30.38	\$	60.76	\$	91.14	\$	121.52	
Staff's Propos	sec	New R	ate	es									
Customer Charge	\$	14.25	\$	14.25	\$	14.25	\$	14.25	\$	14.25	\$	14.25	
Energy Charge													
First 600 kWh	\$	0.06618	\$	39.71	\$	39.71	\$	39.71	\$	39.71	\$	39.71	
All Additional kWh	\$	0.06112	\$	-	\$	24.45	\$	85.57	\$	146.69	\$	207.81	
Riders	-												
AVTS	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	
AERR	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	
TDC	\$	0.01320	\$	7.92	\$	13.20	\$	26.40	\$	39.60	\$	52.80	
ECA	\$	0.03038	\$	18.23	\$	30.38	\$	60.76	\$	91.14	\$	121.52	
Bill Impacts of Current and Proposed Rates													
Current Rates			\$	79.49	\$	120.17	\$	221.86	\$	323.55	\$	425.24	
Proposed Rates				80.11	\$	121.99	\$	226.69	\$	331.39	\$	436.09	
Percentage Inci	rea	se	().77%		1.51%		2.18%		2.42%		2.55%	
NOTE: AVTS = Ad Valor	em	Tax Surcha	rge,	AERR =	Asb	ury Enviro	onm	nental and	l Riv	verton Ric	ler,		
TDC = Transmission De	live	ry Charge,	and	ECA = Er	nerg	gy Cost Ad	jus	tment					

2

Table 5

		Reside	ent	ial Sp	ac	e Heati	ing	;				
	Elecric U	sage in kWh		600		1000		2000		3000		4000
Current Rates												
Customer Charge	\$	14.00	\$	14.00	\$	14.00	\$	14.00	\$	14.00	\$	14.00
	÷											
Energy Charge												
1st block - 1000 kWh	\$	0.05723	\$	34.34	\$	57.23	\$	114.46	\$	171.69	\$	228.92
Pidors												
	Ś	0.00221	Ś	1 3 3	Ś	2 2 1	Ś	4 4 2	Ś	6.63	Ś	8 84
AFRR	Ś	0.00798	Ś	4 79	Ś	7 98	Ś	15 96	Ś	23.94	Ś	31 92
TDC	Ś	-	Ś	-	Ś	-	Ś	-	Ś	-	Ś	-
ECA	\$	0.03038	\$	18.23	\$	30.38	\$	60.76	\$	91.14	\$	121.52
Staff's Proposed Net	w Rates											
Customer Charge	\$	14.25	\$	14.25	\$	14.25	\$	14.25	\$	14.25	\$	14.25
Energy Charge												
1st block - 1000 kWh	\$	0.05666	\$	34.00	\$	56.66	\$	113.32	\$	169.98	\$	226.64
Riders												
AVTS	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
AERR	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
TDC	\$	0.01293	\$	7.76	\$	12.93	\$	25.86	\$	38.79	\$	51.72
ECA	\$	0.03038	\$	18.23	\$	30.38	\$	60.76	\$	91.14	\$	121.52
Bill Impacts of Current and Proposed Rates												
Current Rates			\$	72.68	\$	111.80	\$	209.60	\$	307.40	\$	405.20
Proposed Rates			\$	74.23	\$	114.22	\$	214.19	\$	314.16	\$	414.13
Percentage Decreas	е			2.14%		2.16%		2.19%		2.20%		2.20%
NOTE: AVTS = Ad Valor	em Tax S	urcharge, A	ERR	= Asbur	y En	ivironmer	ntal	and Rive	rtor	Rider,		
TDC = Transmission Delivery Charge, and ECA = Energy Cost Adjustment												

3 **Balancing** Test

4

2

Q. Are you aware of the balancing test set forth by the Kansas Supreme Court for determining whether rates are "just and reasonable?" 5

Yes, the Kansas Supreme Court has stated: 6 A.

7	The leading cases in this area clearly indicate that the goal
8	should be a rate fixed within the 'zone of reasonableness' after
9	the application of a balancing test in which the interests of all
10	concerned parties are considered. In rate-making cases, the

1

1 parties whose interests must be considered and balanced are 2 these: (1) The utility's investors vs. the ratepayers; (2) the 3 present ratepayers vs. the future ratepayers; and (3) the public 4 interest.¹⁸

- 5 Q. Have you performed the requisite balancing test?
- A. Yes. As explained below, I performed the requisite balancing test, as it pertains to
 Staff's proposed rate design.
- 7 Staff's proposed rate design.

8 Investors vs. Ratepayers

9 Ratepayers benefit from the utilities' continuous, reliable operation. Moreover, the 10 proposed rate design provides an opportunity for the utility to recover revenues 11 necessary to cover its costs. Thus, both ratepayers and investors are helped by the 12 recovery of the revenue requirement, which means this balancing test is met.

13 Present vs. Future Ratepayers

14 This balancing factor is commonly referred to as an intergenerational conflict 15 between ratepayers. If one set of ratepayers is paying for costs that do not 16 adequately represent the service received by those ratepayers, then an 17 intergenerational subsidy can occur. A good example of an intergenerational 18 subsidy is the situation regarding the benefits that the first generation of social 19 security recipients received relative to the payments they made into the system. In 20 the electric utility industry, an example would be if the costs of decommissioning 21 a power plant were back-loaded onto future generations. Staff is unaware of any 22 major intergenerational equity issues in this rate case.

¹⁸ Kan. Gas and Electric Co. v. State Corp Comm'n. 239 Kan. 483, 488 (1986).

1 The Public Interest

The public interest is served when the utility remains a healthy, viable business, able to provide reliable service. The proposed rate design provides an opportunity for the utility to recover revenues necessary to cover its costs and fund its ongoing operations. Furthermore, Staff's proposed rate plan is in the best interest of the public because ratepayers are protected from unrealistic price increases, undue discrimination, and unreliable service.

8 Income Tax Credits

9 Q. Why are customers being given income tax credits?

10 A. In December 2017, the Tax Cuts and Jobs Act (TCJA) was passed by Congress. On 11 December 22, 2017 the President signed the legislation into law. The important 12 section of the TCJA for investor owned utilities is the reduction in the corporate tax 13 rate from 35% to 21%. In anticipation of the President signing the legislation, Staff 14 filed a Motion to Open a General Investigation and Issue Accounting Authority 15 Order Regarding Federal Tax Reform on December 14, 2017. The motion initiated 16 Docket No. 18-GIMX-248-GIV (Docket 18-248), which investigated the effect of the change in corporate tax rates on Kansas utilities. 17

18 Staff Witness Justin Grady explains the calculation of the amount of bill credits
19 in his direct testimony. I will describe Staff's allocation of the bill credits back to
20 customers.

21 Q. How were the income tax credits allocated to the customer classes?

Staff allocated the income tax credits to customer classes based on each class's
total base rate revenue from Staff's proof of revenue based on Staff's proposed rate

1 design and Staff's proposed revenue requirement. These allocations are shown in

Table 4 below.

3

2

		Table 6			
Rate Class		Proposed Base Rate Revenue	Al Ir	location of ncome Tax Credits	Percent Change
(a)		(g)		(e)	(f)
RESIDENTIAL					
General	\$	4,864,631	\$	641,935	13.2%
Water Heating	\$	770,480	\$	101,672	13.2%
Space Heating	\$	2,250,345	\$	296,955	13.2%
COMMERCIAL					
Buildings	\$	1,754,462	\$	231,518	13.2%
Space Heating	\$	219,636	\$	28,983	13.2%
OTHER					
General Power	\$	2,791,140	\$	368,318	13.2%
Total Electric Building	\$	644,684	\$	85,072	13.2%
Transmission	\$	2,004,870	\$	264,562	13.2%
Lighting	\$	579,721	\$	76,500	13.2%
Municipal St Lighting	\$	167,739	\$	22,135	13.2%
Private Lighting	\$	393,279	\$	51,897	13.2%
Special Lighting	\$	18,203	\$	2,402	13.2%
		45.070.070		2 005 546	12.20/
IUIAL	5	15.8/9.9/0	5	2.095.516	13.2%

4

5

Q. Why did Staff allocate the income tax bill credits based on class revenues from the proof of revenue?

A. Class revenue represents each class's contribution to Empire's total revenue. The
corporate income tax is a tax on profits, although revenue is not a perfect proxy for
profit, in the case of a regulated utility it is a close proxy. By using Staff's proposed

revenue allocation from the proof of revenue, the income tax credits are reflective
 of Staff's new proposed rate design.

3 Q. How did Staff allocate the bill credits within the rate classes?

A. For the rate classes with customer counts, Staff allocated the class bill credits to
individuals by taking the class' total bill credits and dividing that by the number of
customers in the class. Thus, each customer in a particular class will receive the
same bill credit. Below in Table 7 is the allocation of bill credits to individuals for
the rate classes with customer counts.

9

Rate Class	Number of Customers	In	come Tax Credits	Per Customer Bill Credit			
(a)	(b)	(c)			(d)		
RESIDENTIAL							
General	5 <i>,</i> 553	\$	641 <i>,</i> 935	\$	116		
Water Heating	753	\$	101,672	\$	135		
Space Heating	1,874	\$	296,955	\$	158		
COMMERCIAL							
Buildings	1,183	\$	231,518	\$	196		
Space Heating	110	\$	28,983	\$	263		
OTHER							
General Power	107	\$	368,318	\$	3,442		
Total Electric Building	40	\$	85,072	\$	2,127		

Table 7

10

11Q.How do propose to allocate the income tax credits to the classes without12customer counts?

13 A. The two rate classes without customer counts are Transmission and Lighting. I will

14 discuss Transmission first.

Transmission does have the total energy usage for the test year. I took the total
 income tax credits allocated to Transmission and divided it by the total kWhs for
 the test year. The result is a dollar per kWh for the test year. Thus, customers
 should receive the value of their energy usage multiplied by the dollar per kWh.
 Table 8 below has the calculation of the dollar per kWh value.

6

7

Table	8
-------	---

Rate Class	Energy Usage (kWh)	In	come Tax Credits	Per kWh Bill Credit		
Power Transmission	48,142,857	\$	264,562	\$	0.00550	

8 Q. How do propose to allocate the income tax credits to the Lighting rate class?

9 A. The Lighting rate class has three components: Municipal Street Lighting, Private
10 Lighting, and Special Lighting. The Special Lighting sub-class has test year energy
11 usage, which allows the same type of calculation as was done above for the
12 Transmission class. Table 9 below has the per kWh calculation for the Special
13 Lighting sub-class bill credit.

14

15

Table 9

Rate Class	Energy Usage	Income Tax			Per kWh Bill		
	(kWh)	Credits			Credit		
Special Lighting	154,007	\$	18,203	\$	0.11820		

16 The Municipal Street Lighting and the Private Lighting sub-classes have test 17 year bills. Staff took the total number of monthly bills and divided that into the

er Bill

(d)

Credit

1

total income tax credits for each sub-class. The calculation is shown in Table 10 below.¹⁹

Table 10

2 b

3

4

5

6

c c	Number of	Income Tax	F
ISS	Bills	Credits	Bi
	(b)	(c)	

LIGHTING			
Municipal St Lighting	1,832	\$ 167,739	\$ 91.56
Private Lighting	1,963	\$ 393,279	\$ 200.35
TOTAL		561,019	

IV. CONCLUSION

7 Q. What are the conclusions of your analysis?

Rate Cla

(a)

A. I recommend rejection of the Rate Stabilization Rider because it conflicts with
previous Commission decoupling policy and because Empire's revenue collection
appears to have stabilized in the past few years indicating a decoupling mechanism
is not needed at this time.

12 I recommend the acceptance of Staff's proposed revenue allocation and class

13 rate design because it is a gradual movement toward equalizing class rates of return.

14 Finally, I recommend the acceptance of Staff's proposed allocation of the 15 income tax credits.

¹⁹ In the Lighting Proof of Revenue provided by Empire, the bills for the Municipal Street Lighting subclass were on an annual basis while the bills for the Private Lighting are on a monthly basis. Since the bill credit is a onetime payment, the Private Lighting number of bill was divided by 12 so that both Municipal Street Lighting and Private Lighting bill counts are on an annual basis.

- 1 Q. Does this conclude your testimony?
- 2 A. Yes. Thank you.

EXHIBIT RHG – 1 19-EPDE-223-RTS APPENDIX

APPENDIX: MAY 2018 DOWNWARD SPIKE IN WEATHER NORMED USAGE

Brief Explanation of Staff's Weather Normalization

The spike is a result of both the structure of our weather normalization equations and extreme weather in April and May 2018. However, before I can explain how weather normalization and extreme weather created the May 2018 downward spike, I need to describe the weather variables used in weather normalization.¹ As it turns out, even though temperature is the major factor in heating and cooling decisions, temperature is not a good variable for a regression equation. Figure 3 below illustrates the problem with data from Residential regular service customers and Residential space heating service customers.

Notice that as temperature increases above 65 degrees and decreases below 65 degrees electric usage increases. Thus, just a single temperature variable cannot account for both effects of temperature changes on electric use. The simplest solution has been to develop separate variables for electric cooling demand and electric heating demand. The result has been Heating Degree Days (HDDs) to cover the colder weather and Cooling Degree Days (CDDs) to cover the warmer weather. Equations (1) and (2) below illustrate how these variables cover the two different demands for electricity.

(1)
$$HDD = \left(65 - \frac{Max + Min}{2}\right) if \frac{Max + Min}{2} < 65, Otherwise HDD = 0$$

(2)
$$CDD = \left(\frac{Max + Min}{2} - 65\right) if \frac{Max + Min}{2} > 65, Otherwise CDD = 0$$

Both HDDs and CDDs are the average of the daily maximum temperature and minimum temperature. For HDDs, the average is subtracted from 65 to estimate the daily heating demand for electricity while for CDDs 65 is subtracted from the average to estimate the daily cooling demand. The choice of 65 degrees as the baseline is somewhat arbitrary but the two graphs in

¹ For a fuller explanation of weather normalization and Staff's method see Darren Prince, Direct Testimony, Docket No. 19-EPDE-223-RTS.

Direct Testimony Prepared by Robert H. Glass, PhD Docket No. 19-EPDE-223-RTS Exhibit RHG-1

Figure 3 indicate that at least in that case 65 is good estimate of minimum heating and cooling demand. Finally, to get a monthly value the daily HDDs are added together as are the daily CDDs. Now the explanation of how the weather normalization equations and the extreme weather caused the downward spike.

The May 2018 Downward Spike in Weather Normalized Usage

Weather Normalization Equations: The weather normalization equations for each of the five rate classes selected for the Decoupling Mechanism have four weather variables: current month heating degree days and cooling degree days and one month lagged for each variable. The current and lagged variables capture the billing cycle which is usually spread over two months. Rather than arbitrarily assign weights to each month, Staff's method allows the data to weight the relative importance of the current and lagged month's weather variables.

Extreme Weather: April 2018 was colder than usual and May 2018 was warmer than usual. To see how extreme April and May 2018 were, April's HDD was 433.5 while the 30-year April average HDD was 279.0, and May's CDD was 263.5 while the 30-year May average CDD was 99.1. April 2018 had 55% more HDDs than on average and May 2018 had 1.66% more CDDs than on average.

With these temperature difference from the average, the expectation is that Residential customers without space heating would have much higher electric usage and Residential customer with space heating would have even more because of the lagged effect of the heating demand in April 2018. Table 2 below illustrates that the expectation was correct.

The Effect of Weather Normalization and Extreme Weather on											
the Weather Normalization of May 2018											
		Weather									
	Actual Energy	Normed		Percentage							
Rate Class	Use	Energy Use	Difference	Difference							
RESIDENTIAL											
General	3,916,243	3,012,284	903 <i>,</i> 959	23.1%							
Water Heating	695,303	557,468	137,835	19.8%							
Space Heating	2,102,807	1,571,477	531,330	25.3%							
Total	6,714,353	5,141,229	1,573,124	23.4%							
COMMERCIAL											
Buildings	1,337,589	1,209,171	128,418	9.6%							
Space Heating	270,808	230,132	40,676	15.0%							
Total	1,608,397	1,439,303	169,094	10.5%							
COMBINED TOTAL	COMBINED 8,322,750 6,580,532 1,742,218 23.1%										
NOTE: The table contains May 2018 energy usage in kWhs for the five classes that are part of the Decoupling Mechanism: Residential General, Water											

Heating, and Space Heating, and Commercial Buildings and Space Heating.

Space heating customers, both Residential and Commercial, had larger differences between actual energy use and weather normed energy use. One additional factor making the weather normalization estimate look more extreme is the fact that May is historically the bottom of the first half of the year's electric usage cycle. Thus the extreme adjustment at the typical bottom of the cycle creates a situation where the adjustment attracts attention.

EXHIBIT RHG – 2 19-EPDE-223-RTS Proof of Revenue

Residential

Tariff		Billing	[Existing	С	urrent Base	Pro	nosed Rates	Pi	roposed Base
		Determinants		Rates	Ra	te Revenue	110		R	ate Revenue
(a)	(b)	(c)		(d)		(e)		(f)		(g)
RG-Residen	tial									
Annual	Number of Bills	66,638	\$	14.00	\$	932,932	\$	14.25	\$	949,592
Usage (kWh Sales)									
	First 600 kWh	29,659,525	\$	0.06858	\$	2,034,050	\$	0.06618	\$	1,962,867
All	Additional kWh	31,939,995	\$	0.06112	\$	1,952,172	\$	0.06112	\$	1,952,172
Total Bas	e Rate Revenue				\$	4,919,155			\$	4,864,631
RG-Residen	itial Water Heat	t								
Annual	Number of Bills	9,037	\$	14.00	\$	126,518	\$	14.25	\$	128,777
Usage (kWh Sales)									
	First 600 kWh	4,561,857	\$	0.06309	\$	287,808	\$	0.06112	\$	278,821
All	Additional kWh	5,937,212	\$	0.06112	\$	362,882	\$	0.06112	\$	362,882
Total Bas	e Rate Revenue				\$	777,208			\$	770,480
		_								
RH-Residen	tial Total Electr	ric								
Annual	Number of Bills	22,485	Ş	14.00	Ş	314,790	Ş	14.25	Ş	320,411
Usage (kWh Sales)	34,061,661	Ş	0.05723	Ş	1,949,349	Ş	0.05666	Ş	1,929,934
.					~	2 2 2 4 4 2 2			~	2 252 2 45
Total Bas	e Rate Revenue				Ş	2,264,139			Ş	2,250,345

Commercial

Tarif	f	Billing Determinants	l	Existing Rates	C Ra	urrent Base ate Revenue	Pro	posed Rates	P	Proposed Base Rate Revenue
(a)	(b)	(c)		(d)		(e)		(f)		(g)
CB-C	ommercial									
A	Annual Number of Bills	14,197	\$	19.00	\$	269,743	\$	20.00	\$	283,940
U	Jsage (kWh Sales)									
	First 700 kWh	5,223,091	\$	0.09284	\$	484,912	\$	0.08198	\$	428,189
	All Additional kWh	13,180,745	\$	0.08263	\$	1,089,125	\$	0.07908	\$	1,042,333
То	tal Base Rate Revenue				\$	1,843,780			\$	1,754,462
SH-S	mall Heating									
A	Annual Number of Bills	1,317	\$	19.00	\$	25,023	\$	20.00	\$	26,340
U	Jsage (kWh Sales)									
	First 1,000 kWh	893,440	\$	0.07891	\$	70,501	\$	0.06999	\$	62,532
	All Additional kWh	1,877,985	\$	0.06963	\$	130,764	\$	0.06963	\$	130,764
То	tal Base Rate Revenue				\$	226,288			\$	219,636

Commercial/Industrial

Tariff		Billing	E	Existing	С	urrent Base	Dro	posed Dates	Р	roposed Base
Taffff		Determinants		Rates	Ra	ate Revenue	PIO	poseu Rates	R	ate Revenue
(a)	(b)	(c)		(d)		(e)		(f)		(g)
GP-General	Power							N/A		N/A
Annual N	umber of Bills	1,282								
All KWh l	Jsage	38,603,218	\$	0.03400	\$	1,312,509	\$	0.03111	\$	1,200,946
Minimur	m Adjustment (E	0emand >= 40	<w)< td=""><td></td><td>\$</td><td>64,473</td><td></td><td></td><td>\$</td><td>64,473</td></w)<>		\$	64,473			\$	64,473
First	40kW Demand	47,443	\$	13.02	\$	617,706	\$	12.80	\$	607,269
Next 4	60kW Demand	86,066	\$	10.39	\$	894,227	\$	10.20	\$	877,875
All Addi	tional Demand	5,072	\$	8.15	\$	41,338	\$	8.00	\$	40,577
Total Base	Rate Revenue				\$	2,930,254			\$	2,791,140
TEB-Total El	ectric Building									
Annual N	umber of Bills	481	\$	30.46	\$	14,651	\$	32.00	\$	15,392
Usage (k	Wh Sales)									
	First 150 kWh									
N	lext 9,850 kWh	3,565,111	\$	0.08460	\$	301,608	\$	0.07893	\$	281,394
Abo	ve 10,000 kWh	5,861,801	\$	0.05935	\$	347,898	\$	0.05935	\$	347,898
Total Base	Rate Revenue				\$	664,158			\$	644,684

Transmission and Lighting

Tariff		Billing Determinants	E	Existing Rates	C Ra	urrent Base te Revenue	Proposed Rates		P R	roposed Base ate Revenue
(a)	(b)	(c)		(d)		(e)		(f)		(g)
PT-Tra	nsmission									
All	kWh	48,142,857	\$	0.02083	\$	1,002,816	\$	0.02083	\$	1,002,816
Mi Fi	inimum Demand Char rst 1,000kW Demand	60	\$1	1,858.75	\$	711,525	\$	11,858.75	\$	711,525
All Ad	ditional kW Demand	51,788	\$	5.61	\$	290,529	\$	5.61	\$	290,529
Tota	l Base Rate Revenue				\$	2,004,870			\$	2,004,870
Lightin	Ig									
Mu	nicipal St Lighting				\$	170,772			\$	167,739
Priv	vate Lighting				\$	400,389			\$	393,279
Spe	ecial Lighting				\$	18,532			\$	18,203
					\$	590,201			\$	579,721

Tariff	Billing	l	Existing	C	urrent Base	Pro	posed Rates	P	roposed Base
	Determinants		Rates	Ra	ite Revenue			R	ate Revenue
(a) (b)	(c)		(d)		(e)		(f)		(g)
SPL-Municipal St Lightir	ıg								
Mercury Vapor Lamp	Sizes								
7,000 Lumen Mercury	[,] 860	\$	140.74	\$	121,036	\$	138.24	\$	118,887
11,000 Lumen Mercı	ıry 88	\$	164.58	\$	14,483	\$	161.66	\$	14,226
20,000 Lumen Mercı	ıry 88	\$	234.29	\$	20,618	\$	230.13	\$	20,251
53,000 Lumen Mercı	ary 0	\$	381.58	\$	-				
HP Sodium Vapor Lan	וף Sizes								
6,000 Lumen HP Sodi	um 26	\$	133.00	\$	3,458	\$	130.64	\$	3,397
16,000 Lumen HP Soc	liur 683	\$	167.53	\$	114,423	\$	164.56	\$	112,391
27,500 Lumen HP Sodiı	um 66	\$	207.95	\$	13,725	\$	204.26	\$	13,481
50,000 Lumen HP Sodiı	um 19	\$	305.76	\$	5,809	\$	300.33	\$	5,706
130,000 Lumen HP Sodiu	um 2	\$	477.89	\$	956	\$	469.40	\$	939
Excess Facility				\$	96,903			\$	95,183
50% Discount				\$	(195,467)			\$	(191,996)
Annual Revenue Disc	ount			\$	(25,173)			\$	(24,726)
Total Base Rate Reven	ue			\$	170,772			\$	167,739

Municipal Street Lighting

Private Lighting

Tariff		Billing Determinants	E	Existing Rates	Current Base Rate Revenue	Proposed Rates		P R	Proposed Base Rate Revenue	
(a)	(b)	(c)		(d)	(e)	(f)			(g)	
PL-Priva <u>Insta</u> Mercur 6,800 20,000 54,000	ate Lighting Allation Charge: Sta y Vapor Lamp Sizes Lumen Std Mercury Lumen Std Mercury Lumen Std Mercury	<mark>undard</mark> 4,974 276 0	\$ \$ \$	12.94 19.76 35.79	\$64,364 \$5,454 \$0	\$ \$	12.71 19.41	\$ \$	63,221 5,357	
Sodiur 6,000 16,000 50,000	n Vapor Lamp Sizes) Lumen Std Sodium) Lumen Std Sodium) Lumen Std Sodium	10,469 5,794 291	\$ \$ \$	12.15 17.42 26.77	\$127,198 \$100,931 \$7,790	\$ \$ \$	11.93 17.11 26.29	\$ \$ \$	124,940 99,139 7,652	
Meta 12,000 20,500 36,000	l Halide Lamp Sizes Lumen Std MetalH Lumen Std MetalH Lumen Std MetalH	0 60 192	\$ \$ \$	36.31 26.25 28.33	\$0 \$1,575 \$5,439	\$ \$ \$	35.67 25.78 27.83	\$ \$ \$	- 1,547 5,343	

Direct Testimony Prepared by Robert H. Glass, PhD Docket No. 19-EPDE-223-RTS Exhibit RHG-2

Tariff		Billing Determinants	ł	Existing Rates	Current Base Rate Revenue	Pro	posed Rates	P R	Proposed Base Rate Revenue	
(a)	(b)	(c)		(d)	(e)		(f)		(g)	
PL-Private	Lighting									
Installa	ation Charge: Flo	od								
Mercury V	Vapor Lamp Sizes									
20,000 L	umen Mercury FL	12	\$	29.84	\$358	\$	29.31	\$	352	
54,000 L	umen Mercury FL	12	\$	45.87	\$550	\$	45.06	\$	541	
Sodium	Vapor Lamp Sizes									
27,500	Lumen Sodium FL	132	\$	29.47	\$3,890	\$	28.95	\$	3,821	
50,000	Lumen Sodium FL	547	\$	39.52	\$21,617	\$	38.82	\$	21,234	
140,000	Lumen Sodium FL	348	\$	55.22	\$19,217	\$	54.24	\$	18,875	
Metal F	lalide Lamp Sizes									
12,000	Lumen MetalH FL	0	\$	53.36	\$0	\$	52.41	\$	-	
36,000	Lumen MetalH FL	160	\$	39.67	\$6,347	\$	38.97	\$	6,234	
110,000	Lumen MetalH FL	288	\$	54.16	\$15,598	\$	53.20	\$	15,321	
Ad	ditional Charges									
	Conductor	525,650	\$	0.01964	\$10,324	\$	0.01929	\$	10,140	
	Pole	5,379	\$	1.79	\$9,628	\$	1.76	\$	9,457	
	Anchor	60	\$	1.79	\$107	\$	1.76	\$	105	
					\$ 400,389			\$	393,279	

Private Lighting (Continued)

Special Lighting

Tariff		Billing Determinants	l	Existing Current Base Rates Rate Revenue		Proposed Rates		P R	Proposed Base Rate Revenue	
(a)	(b)	(c)		(d)		(e)		(f)		(g)
LS-SI	pecial Lighting									
F	irst 1,000 kWh	78,091	\$	0.13080	\$	10,214	\$	0.12848	\$	10,033
All Additional		75,916	\$	0.09600	\$	7,288	\$	0.09430	\$	7,159
Minimum Adjustment					\$	1,477	\$	-	\$	1,451
	Church & School				\$	(447)	\$	-	\$	(439)
					\$	18,532			\$	18,203

COUNTY OF SHAWNEE

) ss.

VERIFICATION

Robert H. Glass, Ph.D., being duly sworn upon his oath deposes and states that he is the Chief of Economic Policy and Planning for the Utilities Division of the Kansas Corporation Commission of the State of Kansas, that he has read and is familiar with the foregoing *Direct Testimony*, and attests that the statements contained therein are true and correct to the best of his knowledge, information and belief.

H Slen

Robert H. Glass, Ph.D. Chief of Economic Policy and Planning State Corporation Commission of the State of Kansas

Subscribed and sworn to before me this <u>13</u>th day of May, 2019.

Notary Public - State of Kansas My Appt. Expires

Jacobse

My Appointment Expires: 6-30-22

CERTIFICATE OF SERVICE

19-EPDE-223-RTS

I, the undersigned, certify that a true and correct copy of the above and foregoing Direct Testimony was served via electronic service this 13th day of May, 2019, to the following:

JAMES G. FLAHERTY, ATTORNEY ANDERSON & BYRD, L.L.P. 216 S HICKORY PO BOX 17 OTTAWA, KS 66067 Fax: 785-242-1279 jflaherty@andersonbyrd.com

TODD E. LOVE, ATTORNEY CITIZENS' UTILITY RATEPAYER BOARD 1500 SW ARROWHEAD RD TOPEKA, KS 66604 Fax: 785-271-3116 t.love@curb.kansas.gov

SHONDA RABB CITIZENS' UTILITY RATEPAYER BOARD 1500 SW ARROWHEAD RD TOPEKA, KS 66604 Fax: 785-271-3116 s.rabb@curb.kansas.gov

JILL SCHWARTZ, SR. MGR, RATES & REGULATORY AFFAIRS EMPIRE DISTRICT ELECTRIC COMPANY 602 S JOPLIN AVE JOPLIN, MO 64801 Fax: 417-625-5169 jill.schwartz@libertyutilities.com

BRIAN G. FEDOTIN, DEPUTY GENERAL COUNSEL KANSAS CORPORATION COMMISSION 1500 SW ARROWHEAD RD TOPEKA, KS 66604 Fax: 785-271-3354 b.fedotin@kcc.ks.gov JOSEPH R. ASTRAB CITIZENS' UTILITY RATEPAYER BOARD 1500 SW ARROWHEAD ROAD TOPEKA, KS 66604 Fax: 785-271-3116 j.astrab@curb.kansas.gov ***Hand Delivered***

DAVID W. NICKEL, CONSUMER COUNSEL CITIZENS' UTILITY RATEPAYER BOARD 1500 SW ARROWHEAD RD TOPEKA, KS 66604 Fax: 785-271-3116 d.nickel@curb.kansas.gov

DELLA SMITH CITIZENS' UTILITY RATEPAYER BOARD 1500 SW ARROWHEAD RD TOPEKA, KS 66604 Fax: 785-271-3116 d.smith@curb.kansas.gov

COLE BAILEY, LITIGATION COUNSEL KANSAS CORPORATION COMMISSION 1500 SW ARROWHEAD RD TOPEKA, KS 66604 Fax: 785-271-3354 c.bailey@kcc.ks.gov

ROBERT VINCENT, LITIGATION COUNSEL KANSAS CORPORATION COMMISSION 1500 SW ARROWHEAD RD TOPEKA, KS 66604 Fax: 785-271-3354 r.vincent@kcc.ks.gov

CERTIFICATE OF SERVICE

19-EPDE-223-RTS

JANET BUCHANAN, DIRECTOR- REGULATORY AFFAIRS KANSAS GAS SERVICE, A DIVISION OF ONE GAS, INC. 7421 W 129TH ST OVERLAND PARK, KS 66213-2713 Fax: 913-319-8622 janet.buchanan@onegas.com

SARAH B. KNOWLTON, GENERAL COUNSEL LIBERTY UTILITIES CORP 116 North Main Street Concord, NH 03301 sarah.knowlton@libertyutilities.com JUDY JENKINS HITCHYE, MANAGING ATTORNEY KANSAS GAS SERVICE, A DIVISION OF ONE GAS, INC. 7421 W 129TH ST OVERLAND PARK, KS 66213-2713 Fax: 913-319-8622 judy.jenkins@onegas.com

/s/ Vicki Jacobsen

Vicki Jacobsen