BEFORE THE STATE CORPORATION COMMISSION OF THE STATE OF KANSAS

)

)

)

In the Matter of the Application of Black Hills/Kansas Gas Utility Company, LLC, d/b/a Black Hills Energy, for Approval of the Commission to Make Certain Changes in its Rates for Natural Gas Service

)) Docket No. 25-BHCG-298-RTS

DIRECT TESTIMONY

PREPARED BY

ROBERT H. GLASS, Ph.D.

UTILITIES DIVISION

KANSAS CORPORATION COMMISSION

May 9, 2025

1		I. STATEMENT OF QUALIFICATIONS
2	Q.	What is your name?
3	А.	Robert H. Glass.
4	Q.	By whom and in what capacity are you employed?
5	А.	I am employed by the Kansas Corporation Commission (KCC or Commission) as
6		Chief of the Economics and Rates Section within the Utilities Division.
7	Q.	What is your business address?
8	А.	1500 S.W. Arrowhead Road, Topeka, Kansas, 66604-4027.
9	Q.	What is your educational background and professional experience?
10	А.	I have a B.A. from Baker University with a major in history. I also have an M.A.
11		and a Ph.D. in economics from the University of Kansas. For 22 years, I was
12		employed by the Institute for Business and Economic Research at the University of
13		Kansas, which later became the Institute for Public Policy and Business Research.
14		My primary duty was doing economic research.
15	Q.	Have you previously submitted testimony before this Commission?
16	А.	Yes. I provided testimony as a Staff consultant for Docket Nos. 91-KPLE-140-
17		SEC and 97-WSRE-676-MER. As an employee of the Commission, I have testified
18		in numerous rate case and non-rate case dockets, which can be made available upon
19		request.

II. INTRODUCTION

2 Purpose

1

- 3 Q. What is the purpose of your testimony?
- 4 A. The purpose of my testimony is to sponsor Staff's recommendations regarding
- 5 billing determinants normalization.

6 Black Hills' and Staff's Adjustments

7 Q. What Black Hills Adjustments are you addressing?

8 A. I will investigate IS-7, Revenue Synchronization, IS-8, Weather Normalization and

9 Irrigation Adjustment, and IS-10, Expected Revenues from new Large Volume

10 Transport customers, each of which are shown below in Table 1.

11

Table 1

Black Hills' Adjustments				
Adjustment Name of Adjustment Amount				
IS-7	Revenue Synchronization	\$	136,907	
IS-8	Weather Normalization	\$	269,391	
	Irrigation	\$	(234,694)	
	Total	\$	34,697	
IS-10	LVTS Revenues	\$	419,027	
	Total	\$	590,631	

12

13 Q. What adjustments are you sponsoring?

A. I am sponsoring Staff's IS-19, Weather Normalization and Irrigation, and Staff's
IS-20, Customer Annualization. These adjustments are shown in Table 2 below.
Also, I recommend the Commission accept Black Hills' IS-7, Revenue
Synchronization adjustment of \$136,907 and IS-7, Expected Revenues from new
Large Volume Transport customers of \$419,027.

Table 2	2
---------	---

Staff's Adjustments				
Adjustment	Name of Adjustment	Amount		
IS-19	Weather Normalization	\$	2,443,167	
	Irrigation	\$	(165,451)	
	Total	\$	2,277,716	
	BH Weather Normalization	\$	34,697	
	Staff's IS-19 Adjustment	\$	2,243,019	
IS-20	Customer Annualization*	\$	121,746	
NOTE*: Black	Hills did not do a Customer A	nnua	alization.	

2

3 Organization

4 Q. How is your testimony organized?

5 A. My testimony is organized in six major sections: (1) Synchronization Adjustment, 6 (2) Large Volume Transport New Customers Adjustment, (3) Weather 7 Normalization Analysis, (4) Customer Annualization Analysis, (5) Irrigation 8 Analysis; and (6) Staff Billing Determinants. I will conclude by recommending the 9 Commission adopt Staff's adjustments for Weather Normalization, Customer 10 Annualization, and adopt Staff's adjusted Billing Determinants for revenue 11 allocation and rate design.

12 The analysis sections of my testimony, Weather Normalization Analysis, 13 Customer Annualization Analysis, and the Irrigation Analysis, are organized 14 around the flow of data from one section to the next. The weather normalization 15 needs to be done first because it flows into both the customer annualization and 16 irrigation. The customer annualization needs to be done second because part of it

1 flows into irrigation. Irrigation needs to be done after weather normalization and 2 customer annualization because Black Hills' irrigation methodology conflates both 3 weather normalization and customer annualization. Thus, to provide a 4 commensurate comparison with Black Hills' irrigation adjustment, the weather 5 normalization and customer annualization of irrigation must be pulled from where 6 they are calculated and then combined to provide a commensurate irrigation 7 adjustment with Black Hill's irrigation adjustment. All three analysis sections feed 8 into Staff's final billing determinants that are used for revenue allocation and rate 9 design. Figure 1 below illustrates the data flow.

11

12 III. ANALYSIS: SYNCHRONIZATION ADJUSTMENT

13 Q. What is the synchronization adjustment?

14 A. It is an adjustment to booked revenues, so they are equal to current rates multiplied

1	Δ	How	a tha a		instian	adjustment	a laulated?
1	Q.	HOW	is the s	ynchrol	IIZAUIOII	aujustment	calculateu.

- A. The synchronization adjustment is the difference between booked revenues and test
 year billing determinants multiplied by current rates.¹
- 4 Q. How large is the Black Hills' synchronization adjustment?
- 5 A. The addition of \$136,907 to book revenue will make it equal to base rate
 6 revenue—current rates times test year billing determinants.
- 7 Q. Does Staff agree this is a reasonable approach?
- 8 A. Yes. Staff agrees Black Hill's approach is reasonable and recommends the
 9 Commission accept Black Hills' adjustment.
- 10 IV. ANAYSIS: LARGE VOLUME TRANSPORT ADJUSTMENT

11 Q. Did Black Hills do a customer annualization adjustment?

A. Black Hills did not do a standard customer annualization adjustment, but it did
make an adjustment for new Large Volume Transport Customers that it signed
contracts with and were coming online in the near future. Black Hills' adjustment
for future customers consists of an increase of three customers, an increase of 36
bills, a volumetric increase of 5,118,400 therms, and a revenue increase of
\$419,027.

18 Q. Does Staff agree with this adjustment?

A. Yes. Staff recommends the Commission accept the Large Volume Transport Classadjustment from Black Hills.

¹ Fritel Direct Testimony, p. 5.

1 V. ANALYSIS: WEATHER NORMALIZATION

2 **Purpose**

3 Q. What is the purpose of weather normalizing gas usage?

4 A. Weather normalization minimizes the effect of non-normal weather conditions on 5 test year usage and revenue collections. Some uses for natural gas, such as space 6 heating and water heating, are sensitive to temperature-increasing when 7 temperatures fall and decreasing when temperatures rise. Thus, if the test year is 8 cooler than normal, test year usage and revenue will be higher than normal. 9 However, if a test year is warmer than normal, test year usage and revenue will be lower than normal. Ultimately, this would result in rates being set too low when 10 test year temperatures are lower than normal (or too high when test year 11 12 temperatures are higher than normal) for the utility to collect its approved revenue requirement under normal conditions.² 13

Because test year revenue should reflect normal ongoing operations, the Commission sets rates based on weather-normalized usage. Through the weather normalization process, test year volumes and revenues are adjusted to reflect the difference between actual test year weather and normal weather. Hence, a weather normalization adjustment is applied to test year volumes and revenue, so the test year volumes and revenue are reflective of normal weather.

 $^{^2}$ For example, during periods of colder than normal weather, a natural gas utility will sell more natural gas than they would otherwise have during normal weather. It would be inappropriate to use this above-average usage for setting rates because, as weather returns to normal, the natural gas utility will sell less natural gas than what is needed for the company to recover its revenue requirement at the lower rates.

1 Process

2 Q. Please provide the steps for the weather normalization process.

- 3 A. Staff's weather normalization process can be divided into four steps. In the first 4 step, historical monthly usage data and customer bills are collected for each of the 5 relevant customer classes. Weather data is also collected for each of the agreed to 6 weather stations within the service territory. In the second step, a regression 7 analysis is performed on the data to develop coefficients called Weather Sensitivity 8 Factors (WSFs), which measure the weather sensitivity of per capita customer 9 usage for each customer class. In the third step, the WSFs are used to calculate 10 In the last step, these volumetric adjustments are volumetric adjustments. multiplied by current rates to adjust for deviations from normal weather during the 11 12 test year. Each of these steps is discussed in more detail below.
- 13 Data Collection
- 14 Data Sources

15 Q. Who provided the customer usage and customer bill data?

- 16 A. Black Hills Energy (Black Hills) provided the number of customer bills and the
- 17 billed usage data³ and customer bill data for its Sales and Transportation classes.⁴

³ Ideally, the data provided for weather normalization would be usage data. But in many cases, such as this docket, the only readily available data is billing data. The problems with billing data are multiple. For example, there can be a billing error in one month that is corrected in a different month, which reduces the correlation between weather and the billing data. Also, all customers are not billed on the same day of the month—instead, there is a monthly billing cycle. For these reasons and other reasons, billing data tends to be "noisy." Through aggregation and averaging, some of the deficiencies in the data are reduced in classes with many customers, but smaller classes can still problems. In this regard, compensating errors are helpful. ⁴ Black Hills provided data for the Residential Sales Class, Small Commercial Sales and Transport Classes, Small Volume Sales and Transport Classes. The data for the 10 customer classes was from October 2014 through September 2024, although in some cases there were no data for particular weather stations for

1	Black Hills also assigned the members of the customer classes to their closest first-
2	order weather station. ⁵ With this data, Staff was able to calculate the per capita
3	usage by weather station for each customer class.

4 Q. What is the source of weather data Staff used for its analysis?

- A. Staff collected daily weather data from the National Oceanic and Atmospheric
 Administration (NOAA) for the first-order weather stations closest to Black Hills'
 Kansas customers (Concordia, Dodge City, Goodland, Topeka and Wichita) for the
 period of October 1994 through September 2024. Staff then calculated test year
 monthly Heating Degree Days (HDDs), Cooling Degree Days (CDDs), and
 precipitation, and a 30-year normal (average) for each of these weather variables.
- 11 Q. What are HDDs and CDDs?
- 12 A. HDDs and CDDs are variables that measure deviations from an established base
- 13 temperature (in this case, 65 degrees).⁶ HDDs measure how cool the average daily
- 14 temperature was relative to the base temperature, while CDDs measure how warm
- 15

⁷ Staff calculated HDD and CDD measures as follows.

Max + Min Max + Min

$$HDD = \left(65 - \frac{Max + Min}{2}\right) if \frac{Max + Min}{2} < 65, otherwise HDD = 0$$
$$CDD = \left(\frac{Max + Min}{2} - 65\right) if \frac{Max + Min}{2} > 65, otherwise CDD = 0$$

the average daily temperature was relative to the base temperature.⁷ Figure 1 below

all or parts of the period. Staff had data back to January 2011 for the Residential Class from the previous rate case which allowed Staff to extend the time period for regression analysis.

⁵ First-order refers to weather stations that are professionally maintained, primarily through the National Weather Service or Federal Aviation Administration. Modernization of the National Weather Service during the 1990s resulted in the consolidation of many manned weather stations and the introduction of Automated Surface Observing System (ASOS) instrumentation throughout the United States. ASOS instrumentation is now in use at the vast majority of first-order sites, which are primarily located at airports. See https://www.weather.gov/top/office for more information.

⁶ Degree days are weather variables based on the assumption that when the outside temperature is 65 degrees Fahrenheit, an average person will not require heating or cooling to be comfortable. https://www.weather.gov/key/climate heat cool

shows the relationship between temperature (Fahrenheit) and HDDs; the relationship between CDDs and temperature is the reverse image of Figure 2.

4 5 6

1

2

3

6 Q. Why were HDDs and CDDs used rather than temperature as weather 7 variables?

8 A. There are a couple of obvious advantages of using HDDs to measure weather that 9 creates demand for heating. First, HDDs are strictly positive—there is no transition 10 from positive to negative numbers, and second, above the base temperature, in this 11 case 65°, HDDs are equal to zero.

HDDs are a good proxy for customer gas space heating demand—the greater the number of HDDs, the cooler the weather, and thus, a greater demand for space heating. Similarly, CDDs and precipitation serve as proxies for irrigation customers' demand for gas.

1 **Q.** What are normal weather variables?

- A. We used 30-year rolling averages of the weather variables to represent normal
 weather.
- 4 Q. What is a 30-year rolling average?
- 5 A. We begin with the end of the test year, in the case of this docket, that is September 6 2024 and go back 30 years to October 1994. Thus, the period for calculating the 7 normals is October 1994 through September 2024.
- 8 Data Problems

9 Q. Are there any significant issues with the data collected?

- A. The meaningful problems were with the data from Black Hills. And the problems
 are typical of the problems using billing data. Exhibit -RHG-1 has the details of
 the major data problems. Here I will only go over one extreme problem and Staff's
 proposed solution.
- 14 **Q.** What is the extreme example?
- A. The Large Volume Firm Class for the Topeka weather station had negative
 customer usage for October 2022, which is an impossibility. Table 3 below
 presents the number of customers, the volume of gas usage, and the average usage
 per customer for the unadjusted data and the adjusted data. The October 2022 data
 is in red.

Table 3

	An Extreme Example & Staff Solution					
	to October 2022 Data Problem					
	Topeka: Large Volume Firm Class					
	U	nadjusted Da	ata		Adjusted Dat	a
Month	Bill	Customer	Average	Bill Customer A		Average
Pionui	Count	Gas Usage	Uasge	Count	Gas Usage	Uasge
Apr-22	13	127,301	9,792	13	127,301	9,792
May-22	14	80,441	5,746	14	80,441	5,746
Jun-22	15	44,150	2,943	15	44,150	2,943
Jul-22	14	25,485	1,820	14	25,485	1,820
Aug-22	13	21,738	1,672	13	21,738	1,672
Sep-22	12	29,548	2,462	12	29,548	2,462
Oct-22	4	(14,319)	(3,580)	13	41,769	3,342
Nov-22	13	53,990	4,153	13	53,990	4,153
Dec-22	12	127,034	10,586	12	127,034	10,586
Jan-23	13	183,331	14,102	13	183,331	14,102
Feb-23	13	158,694	12,207	13	158,694	12,207
Mar-23	12	161,969	13,497	12	161,969	13,497
Apr-23 13 114,044 8,773 13 114,044 8,773						8,773
NOTE: The	NOTE: The numbers in parentheses are negative numbers.					
NOTE: The data for October 2022 was adjusted by averaging the bill count and customer usage data for September and November 2022.						

2

3 Q. How did Staff adjust the October 2022 data?

A. Staff first took the simple average of the month before and the month after October
2022 for the bill count and customer usage and then calculated average customer
usage by dividing the revised usage amount by the revised bill count. This
interpolation resulted in a change in the average customer usage from (3,580) to
3,342 therms per customer.

1	Q.	Did the data adjustment affect the estimation of the weather sensitive factors?
2	A.	Yes. The effect of the adjustment on the estimation of the weather sensitive factors
3		will be discussed in the next section, which is devoted to Staff's regression analysis.
4 5	Q.	Are there any cases of negative numbers or other adjustments to the customer usage data in the test year data?
6	А.	Yes. The Irrigation Interruptible Class for the Goodland weather station had
7		negative customer usage for December 2023.
8	Q.	How did Staff handle the negative number for Interruptible Irrigation?
9	A.	For the dataset used for regression estimation, Staff used the same method as
10		described above to estimate a new value to replace the negative number. But, for
11		the billing determinants for the test year, Staff left the negative number in the billing
12		determinants. A general rule of thumb is that rate analysts do not change the initial
13		billing determinants unless an error is found. The negative number could represent
14		an overbilling in another month in the test year, causing an adjustment to overstate
15		the test year billing determinants. And test year billing determinants are aggregated
16		into annual numbers for the calculation of rates, so the negative number should
17		remain part of the annual number.
18	Q.	Did Black Hills change any of the billing determinants?

A. Yes. Staff noticed that the numbers extracted from the billing data worksheet
 provided by Black Hills were not the numbers found in the initial monthly billing
 determinants for the Large Volume Transportation Class.⁸ Black Hills was asked

⁸ Staff extracted the monthly number of bills and customer gas usage from tab WP-2 from Fritel workpaper KSG Direct Exhibit EJF-2,3,4.xlsx. The adjusted Large Volume Transport Class test year billing determinants can be found in tab WP-12 in Fritel workpaper KSG Direct Exhibit EJF-6,7,8.xlsx.

16	Q.	What is Regression Analysis?
15	Re	gression Analysis
14		Volume Transportation test year data looks much more reasonable.
13		close as possible actual usage with the month it was used in. The resulting Large
12	A.	Yes. The intent of the correction is what Staff would like in all cases-matching as
10 11	Q.	Does Staff accept Black Hills' correction to the data issue with the Large Volume Transportation Class?
9		classes the actual usage month and the revenue month do not necessarily align.
8		the revenue month ("revmo") aligns with their actual usage months." For other
7		they actually occur. Due to the nature of transportation customers and their billing,
6		they wanted to "to align the customer counts and usage with the month in which
5		That exception is Large Volume Transportation customers." They did this because
4		determinants are based upon the usage month ("BF Rev Mo"), with one exception.
3		"The billing data used for the weather normalization, customer growth and billing
2		used another dataset for the Large Volume Transportation billing determinants.
1		about this in Staff Data Request No. 163. Black Hills acknowledged that they had

17 A. Regression Analysis is a bundle of statistical techniques used to estimate the
18 strength of the relationship between a dependent variable and one or more
19 independent variables.

20Q.What is the purpose of performing a regression analysis on weather variables21and natural gas usage?

A. Analysts employ regression analysis to derive statistical estimates of weather
 variables impact on average customer gas usage.

Q. How does regression analysis accomplish estimating the impact of the weather variables on average customer gas usage?

3 A. The coefficients estimated for the independent weather variables in the regression 4 equation (WSFs) represent the estimated impact of each independent variable on 5 the dependent variable. Put another way, as the independent variables change, the 6 estimate of the dependent variable changes proportionally, and the estimated value 7 of the dependent variable captures the variance explained by the independent 8 variables. The change in the dependent variable that is not accounted for the change 9 in the independent variables is the unexplained variance, which presents itself in 10 the error term. One of the criteria used to evaluate regression equations is how much of the dependent variables' variance the independent variables explain.⁹ 11

12 Q. What type of regression analysis does Staff use?

A. We use linear regression analysis to estimate the WSFs. The equation below is an
example of a simple weather normalizing equation.

15 $y = a + WSF_1 * HDD + WSF_2 * HDD(-1) + \varepsilon^{10}$

16 In the equation above, the *a* is the intercept term, the ε is an error term, *HDD* and 17 *HDD(-1)*¹¹ are the independent weather variables, and *WSF*₁ and *WSF*₂ are the 18 weather sensitive parameters to be estimated. Using the data described in the *Data* 19 *Collection* section of this testimony, Staff then estimates the WSFs. Attached to

⁹ Ordinary least squares (OLS) estimation minimizes the sum of the squared differences between the actual data and the predicted value of the dependent variable and is the best linear unbiased estimator. There are other methods for estimating the coefficients when OLS has problems, but it is the usual starting point. ¹⁰ In the irrigation equations, the CDD and perception variables are added and nearly always the parameters

on the HDD variables indicated the HDD variables are not statistically significant for estimating irrigation demand.

¹¹ A lagged variable (-1) is the previous month's value when looking at the current month. For example, if the month is October, September HDDs would be the lagged HDDs.

- 1 this testimony as Exhibit RHG-2 is a more detailed description of Staff's weather
- 2 normalization regression analysis methodology.
- 3 Q. How does a linear equation capture non-linear seasonal components to 4 average customer gas usage?
- 5 A. The HDD and HDD(-1) track average customer usage well for rate classes with a
- 6 large number of customers. As an example, below in Figure 3 is a graph showing
- 7 the relationship among HDDs, HDDs(-1), and Residential average customer usage

Figure 3

- 8 for the Dodge City weather station.
- 9

10

Comparison of Dodge City Residential Customer Usage and HDDs 155 1200 HDD (Black) and HDD Lagged One **Residential Per Customer Usage** 135 1000 115 800 95 Month (Red) 600 75 400 55 200 35 15 0 Jul-18 Jul-15 Jul-16 Jul-17 Jan-16 Jan-17 Jan-18 Dodge City HDD Dodge City HDD(-1) Dodge City Residential

11 The graph is for only 37 months, July 2015 through July 2018, because if the 12 full dataset was used, then the graph looks like three curves layered on top of each 13 other. The point is the weather variables do an excellent job of explaining the 14 movement of average customer usage when the average customer usage is well-15 behaved.

1		The Effect of Bad Data on Regression Estimation
2	Q.	How does bad data affect the regression estimation?
3	A.	Bad data thwarts regression analysis or any kind of statistical analysis. A general
4		truism of statistics is that statistical analysis can only be as good as the data
5		used—"garbage in, garbage out."
6		To illustrate this point, we will return to the Topeka weather station example of
7		a negative customer usage in October 2022 for the Large Volume Firm Class. Table
8		4 below shows the estimation of the WSFs using two datasets: the whole dataset
9		available for the regression estimation, October 2014 through September 2024, and
10		a shortened estimation period of February 2022 through September 2024.
11		Table 4

The Effect of Adjusting the Data on Regression Estimation					
Weather	Oct	tober 2014 -	September 20	24	
Sensitivity	Unadji	usted	Adjus	sted	
Factors	Coefficients	Std. Error	Coefficients	Std. Error	
TOP_HDD	1.374	0.662	1.537	0.613	
TOP_HDD(-1)	9.764	0.663	9.490	0.614	
Sum of Coefficients	11.138		11.027		
	February 2022 - September 2024				
TOP_HDD	0.798	1.099	1.640	0.638	
TOP_HDD(-1)	11.848	1.050	10.683	0.610	
Sum of Coefficients	12.646		12.323		

12

13 Q. Why are there two estimation periods?

A. One of the statistical tests that Staff uses is a test of whether there are breakpoints
in the estimated model's results—points where the estimated parameters change
significantly. The Large Volume Firm Class for the Topeka weather station had

1		multiple breakpoints. And as a result, Staff shortened the estimation period to
2		eliminate the breakpoints from the estimation period. ¹²
3	Q.	What is the effect of the adjustment on the estimation result?
4	A.	For the whole dataset, the adjustment changes the relative size of the WSFs with
5		the current period HDD coefficient increasing from 1.374 to 1.537 and the previous
6		period declining from 9.764 to 9.490. But the sums of the coefficients, basically
7		the net effect of the HDD variables, for the estimates are about 1%: the difference
8		in the sums of the coefficients is 11.138 vs. 11.027.
9		However, the regression estimation from the shorter period does show some
10		substantial differences. First, the sum of the WSF values is larger between the
11		unadjusted and adjusted datasets: with the unadjusted dataset 12.646 and 12.323
12		for the adjusted dataset.
13		Second, the standard error for the current period HDD with the unadjusted
14		dataset is large compared to the coefficient value, 0.798 vs. 1.099. That means that
15		potential negative values of the HDD coefficient value and the adjusted coefficient
16		value lie within one standard deviation of the estimated HDD coefficient value. In
17		a normal distribution, approximately 68% of the data falls within one standard
18		deviation of the mean which is the estimated coefficient value in this case, and the
19		mean converges to a standard distribution. If this were the dataset and model
20		chosen by Staff, the current HDD variable would be eliminated from the model
21		because by traditional frequentist standards it is insignificant.

¹² More explanation of breakpoints is provided later in the current section of this testimony.

1		Third, all of the model test statistics, such as the adjusted R ² , F-statistic,
2		loglikelihood function, and the information criteria, indicate that the model
3		performs much better with the adjusted dataset than with the unadjusted dataset.
4		Therefore, Staff concludes that adjusting and shorting the dataset provides a better
5		estimate of the WSF coefficients.
6 7 8	Q.	Even though the adjustment adds to the total customer usage, the WSFs are smaller with the unadjusted dataset than with the adjusted dataset. Please explain the reason for this unintuitive result.
6 7 8 9	Q. A.	Even though the adjustment adds to the total customer usage, the WSFs are smaller with the unadjusted dataset than with the adjusted dataset. Please explain the reason for this unintuitive result. Although the result seems unintuitive, there is an explanation for this conundrum,
6 7 8 9	Q. A.	Even though the adjustment adds to the total customer usage, the WSFs are smaller with the unadjusted dataset than with the adjusted dataset. Please explain the reason for this unintuitive result. Although the result seems unintuitive, there is an explanation for this conundrum, but it requires some explanation. As the variance in the dependent variable

- 12 tend to decrease. This is because when the variance in the dependent variable is
- 13 smaller, there's less variation for the independent variables to capture. This leads
- 14 to a smaller coefficient for each independent variable because it represents the
- 15 proportion of the total variance explained by that particular variable. There are
- 16 exceptions to this observation, but this case follows the usual behavior.¹³
- 17 Other Potential Problems with Regression Analysis

18 Q. Were there any other regression estimation issues?

- 19 A. Yes. Here are the three major problems.
- 20 (1) Even including the weather variables, it was not possible to capture all the
- 21 seasonal effects in the data. Because the data was collected at regular

¹³ Since the method of estimation used is OLS, the coefficients are calculated to reduce the variance of the dependent variable, average customer usage. The standard deviation of average customer usage, the square root of the variance, in the unadjusted shortened dataset is 5,002 while in the adjusted shortened dataset it is 4,705. With a larger variance, a larger coefficient is needed to minimize the variance.

1		intervals over an extended period of time, seasonal serial correlation was
2		usually present in the data. ¹⁴
3		(2) In addition, the HDD and HDD(-1) variables for all weather stations had
4		unit roots as did most of the average customer usage variables.
5		(3) Finally, after estimating a model, Staff checked for breakpoints in the
6		estimation—points where estimated parameters changed significantly
7		These issues and Staff's resolution are discussed in Exhibit RHG-2, which contains
8		a fuller description of our weather normalization regression analysis.
9	Va	lumetric Adjustment
10	Q.	Please describe the process used to calculate the volumetric usage adjustments.
11	A.	To calculate the appropriate adjustment to usage, the actual weather variables were
12		subtracted from the normal weather variables for each month of the test year. ¹⁵
13		These calculated differences were multiplied by the WSFs and then multiplied by
14		the number of class customer bills for each month since the WSFs were estimated
15		for per capita customer usage. The result is the estimated change in usage

¹⁶ (Volumetric Adjustment) =
$$\left[\begin{pmatrix} Normal \\ HDDs, CDDs, or Precipitation \end{pmatrix} - \begin{pmatrix} Actual \\ HDDs, CDDs, or Precipitation \end{pmatrix} \right) (WSF) \right] * (Customer count)$$

¹⁴ Autocorrelation is the correlation of a time series variable with earlier and later value of itself. For example, the best predictor of next period US Gross Domestic Product (GDP) is current period's GDP plus or minus a small percentage change because US GDP is autocorrelated. Seasonality in time series data are regular patterns in the data. For example, air conditioning usage increases in the spring through the summer and then decreases in the fall through the winter.

¹⁵ The reason for subtracting the actual weather variables from the normal weather variables is that if the weather was colder than normal, the resulting subtraction would be negative and reduce the customer usage. If it were warmer than usual, the reverse would happen.

1		customer class for each weather station, and the sum of all those adjustments is the						
2		total weather normalized volumetric adjustment.						
3	Re	venue Adjustment						
4	Q.	Please describe the process used to calculate the revenue adjustment.						
5	A.	The process began with the volumetric sales adjustments for each customer class.						
6		The volumetric sale adjustment was then multiplied by the appropriate rate for that						
7		customer class. ¹⁷ The result is the estimated revenue adjustment necessary to						
8		adjust test year revenues to reflect weather-normalized volumetric sales for that						
9		class. The sum of all those adjustments is the total weather-normalized revenue						
10		adjustment.						
11	Re	esults						
12	Q.	What were the results of Staff's weather normalization analysis?						
13	A.	Staff's total volumetric adjustment is 12,715,734 therms ¹⁸ which translates into a						
14		revenue adjustment of \$2,443,167.						
15 16	Q.	How do Staff's adjustments compare to Black Hills weather normalization adjustments?						
17	A.	The answer to this question is a little more complex than it appears. Black Hills'						
18		weather normalization adjustments are 1,381,083 therms that translate into a						
19		revenue adjustment of \$269,391.						

¹⁷ (Revenue Adjustment) = $\begin{pmatrix} Volumetric \\ Adjustment \end{pmatrix} * \begin{pmatrix} Applicable \\ Tariff Rate \end{pmatrix}$

¹⁸ A therm is a measure of the heat energy. For contrast, a BTU is the fundamental unit of heat energy. "One BTU is the amount of heat it would take to raise the temperature in one pound of water by one degree Fahrenheit." A therm has slightly more heat energy on average than the BTUs created by buring 100 cubic feet of natural gas in the United States. https://naturalgasplans.com/difference-between-ccf-mcf-therm/

1 Q. Are Staff's and Black Hills' weather normalizations commensurable?

2 A. No. Black Hills' adjustments are not commensurable with Staff's adjustments. 3 Black Hills only weather normalized Residential, Small Commercial, Small Volume Firm, and Large Volume Firm Classes. It made a normalizing adjustment 4 5 for Irrigation Interruptible and Transport, but it was not formally a weather normalization adjustment.¹⁹ We weather normalized all sales and transportation 6 7 classes that gave reasonable results including the two irrigation classes. The 8 appropriate weather normalization comparison is to include all the sales and 9 transportation classes except for the irrigation classes, which can be found in Table 10 5 below.

11

Table 5

Staff and Black Hills Weather Normalization						
	St	aff	Black Hills			
Customer	Volumetric	Revenue	Volumetric	Revenue		
Classification	Adjustment	Adjustment	Adjustment	Adjustment		
Residential	8,524,700	1,726,337	1,024,730	207,518		
Small Commercial	1,732,242	350,796	212,191	42,971		
Small Voluum Firm	1,539,149	240,200	97,281	15,182		
Large Voluum Firm	238,501	18,930	46,881	3,721		
Large Voluum Interuptible	1,662	132				
Small Commercial Transport	74,233	12,496				
Small Voluum Transport	602,928	94,093				
Large Voluum Transport	2,317	184				
Total	12,715,734	2,443,167	1,381,083	269,391		

¹⁹ Staff and Black Hills' irrigation adjustments will be discussed after Staff's customer annualization discussion.

1 2	Q.	How much larger is Staff weather normalization adjustment than Black Hills' adjustment?
3	A.	Staff's weather normalization adjustment is a little over 9 times larger than Black
4		Hills' adjustment. If only the classes weather normalized by both Black Hills and
5		Staff are considered, our adjustment is about 8 ² / ₃ larger.
6 7	Q.	Why is Staff's weather normalization adjustment so much larger than Black Hills' adjustment?
8	A.	The primary reason is that Staff's WSFs (the coefficients in from the regression
9		equations) are much larger than Black Hills' WSF. Table 6 below shows Staff's
10		estimated coefficients for the last rate case (21-BHCG-418-RTS) along with Black
11		Hills' and our estimated coefficients for this rate case for the four rate classes that
12		we both estimated.

Ta	ble	6
		-

Comparision of Staff & Black Hills Heating Coefficients												
	Dockets No. 21-BHCG-418-RTS and 25-BHCG-298-RTS											
Docket and		RESIDENT	AL	SMALL COMMERCIAL		SM	ALL VOLUM	E FIRM	LARGE VOLUME FIRM			
Weather Station	HDD 🌅	HDD-1	SUM	HDD	HDD-1	SUM	HDD	HDD-1	SUM	HDD	HDD-1	SUM
	(a)	(b)	(c)=(a)+(b)	(d)	(e)	(f)=(d)+(e)	(g)	(h)	(i)=(g)+(h)	(j)	(k)	(l)=(j)+(k)
STAFF: 21-BHCG	STAFF: 21-BHCG-418-RTS											
Concordia ¹	(0.01)	0.12	0.11	0.01	0.20	0.20	0.01	0.20	0.20	0.01	0.20	0.20
Dodge City	0.04	0.08	0.12	0.07	0.20	0.27	0.45	1.00	1.45	0.00	0.00	0.00
Goodland	0.02	0.11	0.13	0.04	0.25	0.28	0.31	0.75	1.06	0.00	0.00	0.00
Topeka	0.03	0.09	0.12	0.09	0.32	0.41	0.09	0.32	0.41	0.00	23.70	23.70
Wichita	0.04	0.09	0.13	0.18	0.37	0.55	0.18	0.37	0.55	1.29	11.85	13.14
25-BHCE-298-RTS	5											
STAFF												
Concordia	(0.02)	0.11	0.10	(0.03)	0.19	0.16	0.00	0.00	0.00	0.00	0.00	0.00
Dodge City	0.04	0.08	0.12	0.07	0.20	0.28	0.47	1.18	1.65	0.00	0.00	0.00
Goodland	0.03	0.06	0.09	0.03	0.24	0.26	0.14	0.76	0.90	0.00	0.00	0.00
Topeka	0.03	0.10	0.13	0.06	0.24	0.30	0.34	1.33	1.67	1.64	10.68	12.32
Wichita	0.04	0.10	0.14	0.10	0.22	0.33	0.67	1.48	2.15	3.04	19.30	22.33
BLACK HILLS												
Concordia	0.00	0.03	0.03	0.00	0.04	0.04	0.00	0.06	0.06	0.08	0.00	0.08
Dodge City	0.01	0.02	0.02	0.01	0.04	0.05	0.08	0.21	0.29	1.68	0.89	2.57
Goodland	0.00	0.02	0.03	0.00	0.05	0.06	0.07	0.15	0.22	0.16	0.00	0.16
Topeka	0.00	0.02	0.02	0.01	0.04	0.05	0.05	0.23	0.28	0.25	1.99	2.24
Wichita	0.01	0.02	0.02	0.02	0.04	0.05	0.10	0.25	0.35	0.16	3.90	4.06
NOTE ¹ : Concordia	commerci	ial classes	were all estim	nated as or	ne large gro	oup and then th	ne estimat	ed coeffici	ents were app	lied to all o	commercia	l classes.
Black Hills did this	for all the	weather st	ations, but Sta	ff only did	this for Cor	ncordia and th	en estima	ted the oth	er weather sta	tion class	es individu	ally.
NOTE (General): Z	eros indica	te that eithe	er their was no	data for th	e class or w	ve were unable	to find an	adequate m	odel to estima	te the class	6.	
NOTE (General): B	ecause Bla	ck Hills esti	mated all of th	e Commer	cial classes	together in the	e 21-BHCG-	418 docket,	any comparise	on of Black	Hills comm	nercial
stimations in the 21-418 docket with Staff and Black Hills' commercial estimations in the current docket, are not commensurable.												

A. Table 7 on the next page shows the result of dividing Staff's WSFs by Black Hills'
WSFs. The blank space in Table 7 are a result of Black Hills eliminating estimated
coefficients that are negative because it results in dividing by zero. Notice how
large the difference in the coefficients is.

How large are the differences between Staff's WSFs and Black Hills' WSFs?

6 Q. Why the large difference between Staff's and Black Hills' WSFs?

A. Staff has been unable to identify the reason for the large difference. Staff uses
Eviews statistical software to do our econometric estimation. Black Hills revealed
that they used the R statistical software to do their estimation. We estimated the
four classes that Black Hills estimated in both Eviews and R. Our results were
similar—the first two digits for the estimations were almost always the same for
Eviews and R. However, as noted above, our estimates of the WSFs in this docket
are close in most cases to our estimates in the last Black Hills rate case.

14

1

Q.

Table '	7
---------	---

Comparision of Staff & Black Hills Heating Coefficients: Docket No. 25-BHCG-298-RTS								
	Staff estim	ated coeffi	cients divid	ed by Black	Hills estim	nated coeff	icients	
	RESID	ENTIAL	SMALL CO	MMERCIAL	SMALL VO	LUME FIRM	LARGE VO	LUME FIRM
Weather Station	HDD 📑	HDD-1	HDD	HDD-1	HDD	HDD-1	HDD	HDD-1
	(a)	(b)	(d)	(e)	(g)	(h)	(j)	(k)
STAFF/BLACK HIL	LS						_	
Concordia		4.38		4.55		0.00	0.00	
Dodge City	5.36	5.27	5.49	5.02	6.07	5.61	0.00	0.00
Goodland	7.57	2.71	7.52	4.37	1.97	5.09	0.00	
Topeka	5.81	5.66	9.54	6.04	6.99	5.76	6.59	5.37
Wichita	6.85	5.62	6.82	6.15	6.63	5.91	19.19	4.94
NOTE: Black Hills	eliminated ne	egative coeffi	cients when ca	alculatingits	weather norm	nalization. Th	at is the reas	on for the
blank cells. Staff r	etained the n	egative coeffi	cients if the al	osolute value	of the negativ	e coefficient	was smaller 1	than the
positive coefficient. Staff's reason for retaining the negative coefficient is that the incorporation of the current and lagged								
value ot the HDD variables results in the data choosing the relative weights of each variable. If the negative coefficient is								
eliminated, then th	ne equation n	eeds to be ree	estimated so t	hat the prope	r impact of th	e weather on	average usag	je is
estimated. That is	the reason th	hat it is the su	m of the coeffi	icients that re	eveals the imp	bact of the we	ather.	

Q. Are Black Hills's WSFs from the previous rate case similar to their WSFs in this rate case?

- A. In the 21-BHCG-418-RTS docket, Black Hills estimated the Residential Class separately, but combined the data for Small Commercial, Small Volume Firm, and Large Volume Firm Classes and made one estimation for each weather station. And then used those WSFs for all three classes from the same weather station. So, the only commensurable comparison is with the Residential Class between the last rate case and this rate case. Table 8 below shows the comparison between the last rate case and the current rate case for the WSFs for the Residential Class.
- 10

Table 8

Black Hills Residential Heating Coefficients: Dockets No. 21-BHCG-418-RTS & 25-BHCG-298-RTS								
Weather Stations	HDD	HDD-1	SUM					
Weather Stations	(a)	(b)	(c)=(a)+(b)					
21-BHCG-418-RTS								
Concordia	(0.010)	0.113	0.103					
Dodge City	0.036	0.082	0.118					
Goodland	0.018	0.110	0.128					
Topeka	0.021	0.096	0.118					
Wichita	0.033	0.097	0.131					
25-BHCE-298-RTS								
Concordia	(0.003)	0.026	0.023					
Dodge City	0.008	0.015	0.023					
Goodland	0.004	0.023	0.027					
Topeka	0.005	0.018	0.023					
Wichita	0.006	0.017	0.024					

1	Q.	How do the WSFs compare across the two rate cases?					
2	A.	The best comparison is to compare the sum of the coefficients. Notice that the					
3		WSFs from the previous rate case are about 4 to 5 times larger than the coefficients					
4		in the current rate case.					
5		VI. ANALYSIS: CUSTOMER ANNUALIZATION					
6	<u>Purp</u>	<u>ose</u>					
7	Q.	What is the purpose of annualizing customer bills?					
8	A.	Because test-year revenue should reflect normal ongoing operations, the					
9		Commission sets rates based on the current number of customers and their usage.					
10		Through the customer annualization process, test year customer bills, volumes, and					
11		revenues are adjusted to reflect the number of customers in each customer class					
12		Black Hills was serving at the end of the test year. In other words, the adjustment					
13		represents the revenue Black Hills would have received if the number of customers					
14		at year-end had received service throughout the entire test year.					
15	Proce	255					
16	Da	ta Collection					
17 18	Q.	Who supplied Staff with the customer bills and customer usage for customer class by weather station?					
19	A.	As discussed above, Black Hills supplied monthly customer bills and usage for its					

20 Sales and Transportation Classes by weather station.

1 **Customer Coefficient Calculation**

2 **Q**. What is the customer coefficient?

- 3 A. The customer coefficient represents the change in the number of customers each
- 4 month, assuming the change occurred at a constant rate throughout the test year.

5 **O**. How did Staff calculate the customer coefficients?

- 6 A. Staff calculated customer coefficients by subtracting September 2023 customer
- 7 bills from September 2024 customer bills for each class by weather station. This
- 8 value was then divided by twelve to evenly spread the difference across the test-
- vear months.²⁰ 9

10 **Customer Bill Adjustment**

Q. Please describe how the customer coefficients are used to calculate annualized 11 monthly customer bills? 12

- 13 A. Beginning in October 2023 of the test year, the customer coefficient is multiplied 14 by 11.5 (November 2023 by 10.5, and so on) and continues until the actual customer
- 15 bills and annualized customer bills are equal.

16 **O**. Why did Staff annualize customer bills using this method?

17 A. We annualize customer bills using this method for two reasons. First, it simulates 18 the number of customers Black Hills was serving at the end of the test year as if 19 they were served throughout the entire test year. Second, by multiplying by 11.5 20 and so on, Staff is approximating the change in the number of bills resulting from 21 the increase/decrease of customers joining at different times throughout the month

 20 Customer Coefficient = $\frac{September 2023 Customer Count-September 2022 Customer Count}{September 2022 Customer Count}$

- instead of all joining at the beginning of the month. This is the same method Staff
 has used in other recent gas rate cases.
- 3 Volumetric Adjustment

4 Q. How did Staff calculate the volume adjustment?

A. In order to derive annualized monthly volumes, Staff multiplied the annualized
customer bill times the monthly weather normalized volumes per customer across
each rate class and corresponding weather station. The use of the weather
normalization volumes and the interaction between weather normalization and
customer annualization is illustrated in Figure 4 on the next page.

10 *Revenue Adjustment*

11 Q. How did Staff calculate the revenue adjustment?

12 A. In order to arrive at monthly adjusted revenues, we added the product of the 13 annualized monthly volumes and the corresponding volumetric charge to the

- 14 product of the annualized customer bill and the corresponding basic service charge.
- 15 The final test year adjustment is the sum of adjusted revenues across all months in
- 16 the test year associated for each customer class and weather station.

Figure 4

1 *Results*

2 Q. What customer annualization adjustment is Staff recommending?

3 A. Staff's calculation of the customer annualization results for changes in customer 4 bill, volumetric, and revenue adjustments are shown in Table 8 below. The Large 5 Volume Transport Class and the two irrigation classes are not included. The Large 6 Volume Transport Class will be discussed later in this section and the irrigation 7 customer annualization adjustments will be added to the irrigation weather 8 normalization adjustment and discussed in the next section. The customer bill 9 adjustment is 363, volumetric adjustment is 209,411 therms, and a total revenue 10 increase is \$121,746.

-1	-1	

Fable	9
--------------	---

Staff's Customer Annualization			
Customer	Customer Bill	Volumetric	Revenue
Classification	Adjustment	Adjustment	Adjustment
Residential	328	267,574	127,002
Small Commercial	50	84,315	33,875
Small Voluum Firm	(7)	(78,227)	(17,668)
Large Voluum Firm	1	104,411	12,547
Large Voluum Interuptible	0	0	0
Small Commercial Transport	(2)	(6,643)	(1,585)
Small Voluum Transport	(9)	(162,019)	(32,425)
Total	363	209,411	121,746

12 13

14 Q Did Black Hills do a customer annualization adjustment?

A. No. The three new customers in the Large Volume Transport Class discussed
above are the only change in the number of customers made by Black Hills.

1		VII. ANALYSIS: IRRIGATION ADJUSTMENTS
2	<u>Blacl</u>	<u>k Hills' Method for Normalizing Irrigation</u>
3 4	Q.	Why is there an irrigation adjustment separate from the other class adjustments?
5	А.	Black Hills estimated an irrigation adjustment using a different normalization
6		process than the process generally used for either weather normalization or
7		customer annualization.
8	Q.	What method did Black Hills use to estimate its irrigation adjustments?
9	А.	Black Hills used a three-step method to estimate its irrigation adjustments.
10		Step 1. Black Hills used a ten-year average of the monthly average usage per
11		customer as normal irrigation conditions.
12		Step 2. Black Hills calculated the difference between the ten-year average and the
13		actual test year average customer usage.
14		Step 3. Black Hills took the difference between the ten-year average and the test
15		year average usage and multiplied by the delivery (volumetric) charge.
16 17	Q.	What is Black Hills justification for using a different method for estimating an irrigation adjustment?
18	А.	Black Hills justifies its use of a ten-year average of annual average usage as a
19		"normal" by pointing out that, "A ten-year average takes into account multiple
20		considerations that can affect irrigation usage from year-to-year, including HDDs,
21		localized precipitation, crop rotations, improved efficiency, and various other
22		factors." ²¹ Earlier in his testimony, Mr. Fritel notes again that multiple causes could

²¹ Ethan Fritel, Direct Testimony, Docket No. 25-BHCG-298-RTS, pp. 15-16.

1		have caused the increased irrigation during the test year, however he does suggest
2		that "the higher irrigation usage during the Test Year was likely the result of drier
3		conditions that resulted in the need for increased irrigation."22
4	<u>Staff'</u>	s Objections to Black Hills' Method of Estimating an Irrigation Adjustment
5	Q.	Does Staff think this method is appropriate for normalizing irrigation?
6	A.	No. Staff determined that using the standard weather normalization and customer
7		annualization methods provide a better estimate of the irrigation adjustment.
8	Q.	Why?
9	A.	(1) Using the average of average usage for 10 years for normalization is more than
10		just weather normalization and customer annualization. It is protection from
11		technological improvements in irrigation such as drip irrigation and smart irrigation
12		with soil sensors. It is protection from secular trends in the natural gas industry.
13		(2) There have been substantial changes in both the number of customers and the
14		average customer usage over the 10 year period. Figure 5 below shows the change
15		in the average annual number of customers for Sales and Transportation Irrigation
16		Customers, and Figure 6 below Figure 5 shows the annual average use per customer
17		for both classes. ²³ Because of the substantial changes, it is not average annual
18		customer usage that should normalized, but the major cause of the changes in
19		average annual customer usage, which leads to number (3).

²² *Ibid.* p. 15.
²³ The data underlying Figures 5 and 6 are from Exhibit EJF-5.

which would explain increased irrigation. The brown areas below zero in the graph show months below average wetness using the Palmer Drought Severity Index whose classification is shown in Table 10 below Figure 7.

30

7

2

3

4

1

Table 10

Near Normal Conditions Are 0.49 to (0.49)				
Wet Conditions		Dry Conditions		
PDSI value	Classification	PDSI value	Classification	
0.5 to 0.99	Incipient Wet Spell	(0.5) to (0.99)	Incipient Dry Spell	
1.0 to 1.99	Slightly Wet	(1.0) to (1.99)	Mild Drought	
2.0 to 2.99	Moderate Wet	(2.0) to (2.99)	Moderate Drought	
3.0 to 3.99	Very Wet	(3.0) to (3.99)	Severe Drought	
4.0 or more	Extremely Wet	(4.0) or Less	Extreme Drought	

5 Figure 7 illustrates that 10 years is not long enough to get the full Kansas 6 drought cycle. Thus, using a shorter period of time for calculating an irrigation 7 normal is inadequate. Just to capture the current cycle, one would need to go back 8 to 2011 or 2012. And the drought part of the cycle is not over yet.

Kansas Palmer Drought Severity Index (PDSI)
1 Staff's Irrigation Adjustment

2 Q. How did Staff estimate its irrigation adjustments?

A. We used the same techniques we did to estimate the adjustments in the other
classes. First, we weather normalized the irrigation classes using primarily
precipitation, but also cooling degree days (CDD), which capture the warmth of
Spring, Summer, and Autumn. Second, we used customer annualization to capture
the changes in customer bill count. Table 11 shows our results.

8

Table	11
-------	----

	Staff Irrigation Adjustment									
Quatamax	Weather No	ormalization	Customer Annualization							
Classification	Volumetric	Volumetric Revenue C		Volumetric	Revenue					
	Adjustment	Adjustment	Adjustment	Adjustment	Adjustment					
Irrigation Interruptible	(1,929,031)	(103,743)	(258)	(366,214)	(33,518)					
Irrigation Transport	(408,730)	(21,981)	(54)	(70,262)	(6,209)					
Total	(2,337,761)	(125,725)	(312)	(436,476)	(39,727)					

9

10 Q. How does Staff's irrigation adjustment compare to Black Hills' adjustment?

A. Table 12 compares our irrigation adjustments to Black Hills's irrigation
adjustments. Staff's adjustments are in the same direction as Black Hills'
adjustments, but substantially smaller in absolute value terms.

Table 12

Staff and Black Hills Irrigation Adjustment										
	St	aff	Black	(Hills						
Customer	Volumetric	Revenue	Volumetric	Revenue						
Classification	Adjustment	Adjustment	Adjustment	Adjustment						
Irrigation Interruptible	(2,295,246)	(137,261)	(3,099,240)	(166,677)						
Irrigation Transport	(478,991)	(28,190)	(1,264,726)	(68,017)						
Total	(2,774,237)	(165,451)	(4,363,967)	• (234,694)						

3 <u>Recommendations</u>

4 Q. Now that Staff's weather normalization, customer annualization, and 5 irrigation analysis are complete, do you have any recommendations?

A. Yes. I recommend the Commission accept our weather normalization and irrigation
adjustment (Staff IS-19) of \$2,243,019. Additionally, I recommend the
Commission accept our customer annualization adjustment (Staff IS-20) of

9 \$121,746.

10Q.Because Staff used both the weather normalization analysis and the customer11annualization analysis to create the irrigation analysis, did you make sure to12not include any double counting?

13 Yes. First, we pulled the irrigation classes out of both the weather normalization A. 14 and customer annualization analysis. Next, to make a separate irrigation 15 adjustment, we combined the weather normalization and customer annualization 16 for the irrigation. The combining of Staff's weather normalization and irrigation adjustments allowed for a commensurate comparison to Black Hills IS-8 17 18 adjustment. Put another way, Staff's IS-19 and Black Hills IS-8 adjustments are 19 commensurable.

1

2

1		VIII. ANALYSIS: BILLING DETERMINANTS
2	<u>Staff</u>	's Proposed Billing Determinants
3 4	Q.	Have you put together a table that shows the initial billing determinants and Staff's adjustments?
5	A.	Yes. Table 13 on the next page shows the initial billing determinants, the same
6		initial billing determinants used by Black Hills, and then shows Staff's adjustments
7		to those billing determinants. The initial number of bills are shown in column (a).
8		Column (b) has Staff's customer bill adjustment from its customer annualization.
9		Column (b) also includes Black Hills Large Volume Transport Class customer
10		additions: 3 customers, 36 bills. Column (c) combines the initial number of bills
11		with Staff's bill adjustments. Column (d) has the initial customer usage in therms.
12		Column (e) has Staff's customer usage adjustment from our customer
13		annualization. Column (f) has Staff's customer usage adjustment from our weather
14		normalization analysis. Finally, Column (g) has Staff's final estimate of customer
15		usage, adding together Columns (d), (e), and (f).

Ta	ble	13
----	-----	----

Staff's Billing Determinants									
Customer	Number	Staff's	Staff's Adjusted	Customer	Staff's Customer	Staff's Weather Norm	Staff's Adjusted		
Class	of	Customer	Number of	Usage	Adjustment	Adjustment	Customer Usage		
	Bills	Adjustment	Bills	(Therms)	(Therms)	(Therms)	(Therms)		
	(a)	(b)	(c)	(d)	(e)	(f)	(g)		
Residential	1,271,308	328	1,271,636	61,963,635	267,574	8,524,700	70,755,908		
Small Commercial - Sales	116,091	50	116,141	12,196,387	84,315	1,732,242	14,012,944		
Small Commercial - Transportation	2,452	(2)	2,451	604,152	(6,643)	602,928	1,200,438		
Small Volume Firm	15,397	(7)	15,391	12,889,053	(78,227)	1,539,149	14,349,976		
Small Volume Transportation	5,511	(9)	5,503	6,600,794	(162,019)	602,928	7,041,703		
Large Volume Firm	505	1	506	3,879,337	104,411	238,501	4,222,250		
Large Volume Transportation	1,429	36	1,465	59,860,668	5,118,400	2,317	64,981,385		
Large Volume Interruptible	181	0	181	2,410,164	0	1,662	2,411,826		
Subtotal	1,412,874	399	1,413,273	160,404,190	5,327,811	13,244,429	178,976,430		
Irrigation Service	16,095	(258)	15,837	31,586,269	(366,214)	(1,929,031)	29,291,023		
Irrigation Transportation	4,123	(54)	4,069	7,860,659	(70,262)	(408,730)	7,381,668		
Total Sales and Transportation	1,433,092	87	1,433,179	199,851,118	4,891,335	10,906,668	215,649,121		

3

How do Black Hills' final billing determinants compare with Staff's estimates? 1 Q. 2 Table 14 on the next page has Black Hills' final billing determinants. Columns (a) A. 3 and (b) have the initial number of bills and customer usage. Column (c) has only 4 the 36 additional bills from the new Large Volume Transport customers, and Column (d) has the expected usage by these new customers. Column (e) has Black 5 Hills weather normalization and their irrigation adjustment. Finally, Columns (f) 6 and (g) have the final estimated number of bills and customer usage. 7

Τ	a	bl	e	1	4

		Black Hills Customer Count and Customer Usage								
Number Customer Customer Weather Norm Adjusted Adjust										
Customer	of	Usage	Additions	Additions	Adjustment	Number of	Customer Usage			
Class	Bills	(Therms)	Bills	(Therms)	(Therms)	Bills	(Therms)			
	(d)	(b)	(c)	(d)	(e)	(f)	(g)			
Residential	1,271,308	61,963,635			1,024,730	1,271,308	62,988,365			
Small Commercial - Sales	116,091	12,196,387			212,191	116,091	12,408,578			
Small Commercial - Transportation	2,452	604,152				2,452	604,152			
Small Volume Firm	15,397	12,889,053			97,281	15,397	12,986,334			
Small Volume Transportation	5,511	6,600,794				5,511	6,600,794			
Large Volume Firm	505	3,879,337			46,881	505	3,926,218			
Large Volume Transportation	1,429	59,860,668	36	5,118,400		1,465	64,979,068			
Large Volume Interruptible	181	2,410,164				181	2,410,164			
Subtotal	1,412,874	160,404,190	36	5,118,400	1,381,083	1,412,910	166,903,673			
Irrigation Service	16,095	31,586,269			(3,099,240)	16,095	28,487,029			
Irrigation Transportation	4,123	7,860,659			(1,264,726)	4,123	6,595,933			
Total Sales and Transportation	1,433,092	199,851,118	36	5,118,400	(2,982,884)	1,433,128	201,986,634			
NOTE: Black Hills only weather normalized the Residential, Small Commercial, Small Volume, and Large Volume Sales										

Although Staff and Black Hills started with the same initial billing
 determinants, Staff's final number of bills and customer usage were larger than
 Black Hills'. Table 15 below has a comparison of the total sales and transportation
 billing determinants.

5

Т	ิ่ล	h	le	1	5
	a	U 1	· ·		~

		Staff and Black Hills' Final Billing Determinants									
		Total Sales and Transportation	Number of	Customer Usage							
		Totat Sates and Transportation	Bills	(Therms)							
	Init	tial Billing Determinants	1,433,092	199,851,118							
	Sta	aff Final Billing Determinants	1,433,179	215,649,121							
6	Bla	ack Hills Final Billing Determinants	1,433,128	201,986,634							
8 9	than Black Hills. The difference in therms is almost all due to Staff's much larger weather normalization adjustment.										
0	IX. CONCLUSION										
1	Q.	Please summarize your recommen	ndation.								
2	A.	I recommend that the Commission	on accept Staff's wea	ther normalization an							

A. I recommend that the Commission accept Staff's weather normalization and
Irrigation adjustment (Staff IS-19) of \$2,243,019 and customer annualization
adjustment (Staff IS-20) of \$121,746. In addition, I recommend the Commission
accept Black Hills' revenue synchronization adjustment of \$136,907 and Large
Volume Transport adjustment of \$419,027.

Finally, I recommend the Commission accept Staff' adjusted billing determinants, which include Staff's weather normalization and customer annualization number of customer bills and customer adjustments for use in revenue allocation and rate design.

38

- 1 Q. Does this conclude your testimony?
- 2 A. Yes. Thank you.

EXHIBIT RHG-1

DOCKET NO. 25-BHCG-298-RTS

Data Problems with Black Hills'

Number of Bills and Customer Gas Usage

Data Problems with Black Hills' Number of Bills and Customer Gas Usage

Data Problems

Billing Data Problems

We recognize that data problems happen, especially since we are using billing data. Ideally, the data provided for weather normalization and customer annualization would be usage rather than billing data. But usually that is not possible, such as this docket, where the only readily available data is billing data.

There can be multiple problems with billing data because of the billing configuration. For example, there can be a billing error in one month that is corrected in a different month. Because of the correction of billing errors and other reasons, billing data tends to be "noisy." Through aggregation and averaging, some of the deficiencies in the data are mitigated, though aggregation is usually effective if a class is sufficiently large. However, commercial and industrial classes usually have smaller numbers of customers and aggregation is less effective at smoothing the data. All of the major data problems in this docket happened with the commercial and industrial class.

Organization

The specific issues we will discuss are:

- (1) October 2022
- (2) Large Volume Transport
- (3) Large Volume Firm
- (4) Concordia—Irrigation Interruptible
- (5) Methods Used to Mitigate Problems

October 2022: Multiple Case of Unexpected Data

Dodge City, Goodland, Topeka, and Wichita all have unexpected data for October 2022. The worst situation is Topeka which has six classes with strange data for October 2022.

<u>Topeka</u>

In Table 1 below are the data for October 2022 and the six months before and after for the four rate classes that Mr. Fritel weather normalized. In each class, October 2022 is an

outlier or nearly an outlier. In particular, the negative usage by the Large Volume Class is an obvious problem.

	Торека									
	Residential				Sma	ll Commer	cial			
	Cust Count	Usage	Avg Usage		Cust Count	Usage	Avg Usage			
Apr-22	36,599	2,148,512	58.70		2,407	286,836	119.17			
May-22	36,695	1,087,590	29.64		2,460	139,614	56.75			
Jun-22	37,127	542,649	14.62		2,447	63,612	26.00			
Jul-22	33,649	362,935	10.79		2,275	42,655	18.75			
Aug-22	33,558	354,744	10.57		2,161	41,063	19.00			
Sep-22	32,672	358,919	10.99		2,149	47,744	22.22			
Oct-22	8,865	459,764	51.86		489	51,107	104.51			
Nov-22	32,720	1,044,988	31.94		2,180	128,796	59.08			
Dec-22	32,817	3,141,360	95.72		2,194	432,582	197.17			
Jan-23	32,935	4,136,082	125.58		2,199	643,170	292.48			
Feb-23	32,880	3,807,419	115.80		2,202	546,222	248.06			
Mar-23	32,984	3,041,096	92.20		2,216	481,818	217.43			
Apr-23	32,918	2,058,938	62.55		2,207	296,001	134.12			
	Sma	all Volume I	irm		Large	e Volume F	irm			
	Cust Count	Usage	Avg Usage		Cust Count	Usage	Avg Usage			
Apr-22	328	353,748	1,079		13	127,301	9,792			
May-22	315	192,744	612		14	80,441	5,746			
Jun-22	325	139,398	429		15	44,150	2,943			
Jul-22	294	94,795	322		14	25,485	1,820			
Aug-22	284	99,543	351		13	21,738	1,672			
Sep-22	283	116,528	412		12	29,548	2,462			
Oct-22	46	96,008	2,087		4	(14,319)	(3,580)			
Nov-22	286	202,499	708		13	53,990	4,153			
Dec-22	284	440,647	1,552		12	127,034	10,586			
Jan-23	288	548,576	1,905		13	183,331	14,102			
Feb-23	281	509,358	1,813		13	158,694	12,207			
Mar-23	282	454,124	1,610		12	161,969	13,497			
Apr-23	283	329,235	1,163		13	114,044	8,773			

Table 1

Two additional rate classes with October 2022 problems are the Small Commercial Transportation and Small Volume Transportation Classes. The same range of data is shown for these two classes in Table 2 below. Again, the October 2022 data stand out.

	Торека								
	Small Cor	nmercial	Fransport		Small Volu	ume Trans	portation		
	Cust Count	Usage	Avg Usage		Cust Count	Usage	Avg Usage		
Apr-22	40	17,500	437.50		123	200,407	1,629.33		
May-22	43	18,371	427.23		111	120,503	1,085.61		
Jun-22	41	9,288	226.54		119	93,774	788.02		
Jul-22	53	10,219	192.81		105	60,821	579.25		
Aug-22	27	6,289	232.93		101	55,282	547.35		
Sep-22	40	7,691	192.28		102	62,380	611.57		
Oct-22	33	14,172	429.45		25	62,548	2,501.92		
Nov-22	41	10,197	248.71		99	108,357	1,094.52		
Dec-22	41	20,076	489.66		100	238,458	2,384.58		
Jan-23	41	29,865	728.41		99	299,785	3,028.13		
Feb-23	40	24,553	613.83		100	269,827	2,698.27		
Mar-23	40	25,683	642.08		99	256,146	2,587.33		
Apr-23	41	18,846	459.66		97	185,539	1,912.77		

Table 2

Dodge City

For Dodge City and Wichita, the same two classes, Small Commercial Transportation and Small Volume Transportation, also have strange numbers for October 2022. See Tables 3 and 4 below.

	1		Dec	100	^:+ .				
		Dodge City							
	Small Con	nmercial	Fransport		Small Volu	ume Trans	portation		
	Cust Count	Usage	Avg Usage		Cust Count	Usage	Avg Usage		
Apr-22	80	15,765	197.06		235	301,823	1,284.35		
May-22	79	6,145	77.78		234	158,946	679.26		
Jun-22	82	2,807	34.23		228	108,263	474.84		
Jul-22	75	1,268	16.91		226	78,842	348.86		
Aug-22	75	1,301	17.35		214	69,184	323.29		
Sep-22	75	1,804	24.05		209	68,856	329.45		
Oct-22	48	2,934	61.13		85	110,751	1,302.95		
Nov-22	74	8,440	114.05		196	144,165	735.54		
Dec-22	74	34,705	468.99		193	347,968	1,802.94		
Jan-23	74	45,608	616.32		192	452,345	2,355.96		
Feb-23	74	43,282	584.89		192	417,657	2,175.30		
Mar-23	75	35,787	477.16		192	379,969	1,979.01		
Apr-23	73	24,702	338.38		193	269,307	1,395.37		

Table 3

Table 4

		Wichita						
	Small Cor	Small Commercial Transport				ume Trans	portation	
	Cust Count	Usage	Avg Usage		Cust Count	Usage	Avg Usage	
Apr-22	76	16,225	213.49		161	301,309	1,871.48	
May-22	76	10,928	143.79		165	142,352	862.74	
Jun-22	86	3,269	38.01		161	101,401	629.82	
Jul-22	71	2,281	32.13		151	64,817	429.25	
Aug-22	68	2,307	33.93		148	58,264	393.68	
Sep-22	68	2,468	36.29		148	69,605	470.30	
Oct-22	11	2,518	228.91		65	92,907	1,429.34	
Nov-22	68	7,141	105.01		149	166,482	1,117.33	
Dec-22	68	24,812	364.88		149	417,849	2,804.36	
Jan-23	68	33,512	492.82		149	549,031	3,684.77	
Feb-23	68	29,501	433.84		149	495,367	3,324.61	
Mar-23	68	26,283	386.51		149	448,488	3,009.99	
Apr-23	68	14,886	218.91		149	274,510	1,842.35	

<u>Goodland</u>

For Goodland, only the Small Volume Transportation Class has curious numbers for October 2022. See Table 5 below.

	Goodland						
	Small Volume Transportation						
	Cust Count	Avg Usage					
Apr-22	23	28,882	1,255.74				
May-22	21	12,275	584.52				
Jun-22	22	9,113	414.23				
Jul-22	22	3,102	141.00				
Aug-22	20	5,860	293.00				
Sep-22	26	2,687	103.35				
Oct-22	22	625	28.41				
Nov-22	26	7,107	273.35				
Dec-22	26	20,574	791.31				
Jan-23	26	32,377	1,245.27				
Feb-23	26	28,392	1,092.00				
Mar-23	26	28,348	1,090.31				
Apr-23	26	23,344	897.85				

Table 5

Large Volume Transportation Class Unexpected Data

Dodge City, Topeka, and Wichita Large Volume Transport Class all had data problems at the same time: May and June 2021, November 2023, and August and September 2024. Table 6 below illustrates these problems.

	Large Volume Transport								
		Dodge Cit	у		Topeka			Wichita	
	Cust Count	Therms	Avg Use	Cust Count	Therms	Avg Use	Cust Count	Therms	Avg Use
Jan-21	59	1,336,826	22,658	27	1,105,758	40,954.00	42	1,919,082	45,692.43
Feb-21	60	1,354,703	22,578	27	1,196,898	44,329.56	42	2,003,018	47,690.90
Mar-21	62	1,287,575	20,767	27	1,322,121	48,967.44	42	1,968,196	46,861.81
Apr-21	59	1,183,184	20,054	28	830,509	29,661.04	42	1,451,385	34,556.79
May-21	34	1,094,296	32,185	17	342,937	20,172.76	28	1,172,982	41,892.21
Jun-21	37	1,482,954	40,080	17	859,611	50,565.35	21	1,222,255	58,202.62
Jul-21	60	1,436,661	23,944	27	451,608	16,726.22	42	1,057,596	25,180.86
Aug-21	61	2,307,303	37,825	28	478,822	17,100.79	42	1,015,404	24,176.29
Sep-21	60	2,545,462	42,424	27	440,957	16,331.74	44	1,052,224	23,914.18
Oct-21	62	1,442,179	23,261	24	462,196	19,258.17	40	1,004,099	25,102.48
Nov-21	61	1,170,491	19,188	26	593,571	22,829.65	42	1,288,801	30,685.74
Dec-21	61	1,306,805	21,423	26	796,132	30,620.46	43	1,294,190	30,097.44
Sep-23	52	5,194,199	99,888	24	506,025	21,084.38	41	1,228,144	29,954.73
Oct-23	56	3,243,958	57,928	24	497,555	20,731.46	42	1,015,956	24,189.43
Nov-23	92	5,527,340	60,080	43	847,688	19,713.67	76	2,755,794	36,260.45
Dec-23	52	1,683,951	32,384	24	1,404,139	58,505.79	41	1,507,812	36,775.90
Jan-24	54	1,515,618	28,067	24	1,217,294	50,720.58	41	1,728,957	42,169.68
Feb-24	53	1,114,185	21,022	24	818,981	34,124.21	40	2,127,920	53,198.00
Mar-24	53	1,877,438	35,423	24	606,098	25,254.08	40	1,749,554	43,738.85
Apr-24	53	3,111,213	58,702	24	996,887	41,536.96	41	1,256,136	30,637.46
May-24	53	2,622,047	49,473	23	540,301	23,491.35	40	1,173,816	29,345.40
Jun-24	54	2,868,954	53,129	23	452,438	19,671.22	41	1,807,228	44,078.73
Jul-24	53	2,252,847	42,507	23	293,890	12,777.83	41	1,497,250	36,518.29
Aug-24	53	5,865,139	110,663	22	641,903	29,177.41	41	2,656,869	64,801.68
Sep-24	10	149,124	14,912	4	64,286	16,071.50	5	300,690	60,138.00

Table 6

Unexpected Data for the Dodge City Large Volume Firm Class

Figure 1 below is Dodge City average use for the Large Volume Firm Class. The problem are the occasional spikes in the data, particularly in 2017 and 2018, are shown in Figure 1 below. The data for the huge spikes are below in Table 7.

Figure 1: Dodge City Large Volume Firm

Table 7

	Dodge City							
	Lar	ge Volume F	irm		Lar	Large Volume Firm		
	Cust	Thorme	Avelleo		Cust	Thorme	Avelleo	
	Count	menns	Avg Use		Count	menns	Avguse	
Apr-17	6	76,406	12,734	Nov-22	9	60,762	6,751	
May-17	7	97,418	13,917	Dec-22	8	95,219	11,902	
Jun-17	7	181,387	25,912	Jan-23	10	118,126	11,813	
Jul-17	6	312,893	52,149	Feb-23	8	117,592	14,699	
Aug-17	7	217,071	31,010	Mar-23	7	264,754	37,822	
Sep-17	7	64,301	9,186	Apr-23	10	95,114	9,511	
Oct-17	7	121,686	17,384	May-23	9	36,321	4,036	
Nov-17	7	269,153	38,450	Jun-23	10	85,244	8,524	
Dec-17	7	432,322	61,760	Aug-23	10	27,443	2,744	
Jan-18	7	560,704	80,101	Sep-23	10	31,772	3,177	
Feb-18	5	131,922	26,384	Oct-23	10	42,498	4,250	
Mar-18	5	99,123	19,825	Nov-23	9	67,206	7,467	
Apr-18	5	91,610	18,322	Dec-23	9	102,342	11,371	

Concordia Irrigation Interruptible Class Data Problems

Below is Figure 2 for Concordia Irrigation Interruptible Class. There are two data problems in Figure 2: the negative number for December 2023 and the unusually low numbers for June 2019 and June 2023.

Table 8 below shows the negative usage for December 2023 and that the number of customers is smaller than the surrounding months.

Concordia Irrigation Interruptible					
	No. Cust	Therms	Avg Use		
Sep-23	39	60,642	1,554.92		
Oct-23	38	7,411	195.03		
Nov-23	39	6,048	155.08		
Dec-23	29	(21,513)	(741.83)		
Jan-24	35	94	2.69		
Feb-24	38	174	4.58		
Mar-24	38	1,622	42.68		

Table 8

Table 9 below shows that June 2019 and June 2023 are significantly different than other Junes during the 10-year period used for weather normalization. The 10-year average usage is 1,527.84 per customer while the 8-year average usage without 2019 and 2023 is 1,820.88 per customer.

Concordia Irrigation Interruptible						
	No. Cust	Therms	Avg Use			
Jun-15	30	35,923	1,197.43			
Jun-16	37	53,145	1,436.35			
Jun-17	36	39,982	1,110.61			
Jun-18	31	84,678	2,731.55			
Jun-19	31	4,918	158.65			
Jun-20	29	107,526	3,707.79			
Jun-21	35	55,173	1,576.37			
Jun-22	39	75,992	1,948.51			
Jun-23	29	6,458	222.69			
Jun-24	37	46,503	1,256.84			

Bad Data Mitigation Methods

Primary Method—Averaging Closest Months

In my Direct Testimony on pages 7 and 8, I discussed the extreme example of the Topeka Large Volume Transport Class negative volumes for October 2022. Clearly, a customer cannot consume a negative amount of gas in a month. Table 1 above has the Topeka Large Volume Transport Class negative value for October 2022 and some surrounding data.

The Large Volume Transport Class portion of Table 1 is shown below as Table 10, the same table as Table 1 in the Direct Testimony on page 7. In addition, Table 10 has our adjustment of the negative value for October 2022. All the October 2022 data is in red.

As noted in the testimony, we used a simple average of the month before and the month after to substitute for the initial negative value. This was the primary method used to adjust the data problems described above. However, this primary method did not always provide a realistic result. In cases where it did not provide a realistic result, we tried a second method.

An Extreme Example & Staff Solution						
to October 2022 Data Problem						
		Topek	ka: Large Vo	olume Firn	n Class	
	U	nadjusted Da	ata		Adjusted Dat	a
Month	Bill	Customer	Average	Bill	Customer	Average
Pionar	Count	Gas Usage	Uasge	Count	Gas Usage	Uasge
Apr-22	13	127,301	9,792	13	127,301	9,792
May-22	14	80,441	5,746	14	80,441	5,746
Jun-22	15	44,150	2,943	15	44,150	2,943
Jul-22	14	25,485	1,820	14	25,485	1,820
Aug-22	13	21,738	1,672	13	21,738	1,672
Sep-22	12	29,548	2,462	12	29,548	2,462
Oct-22	4	(14,319)	(3,580)	13	41,769	3,342
Nov-22	13	53,990	4,153	13	53,990	4,153
Dec-22	12	127,034	10,586	12	127,034	10,586
Jan-23	13	183,331	14,102	13	183,331	14,102
Feb-23	13	158,694	12,207	13	158,694	12,207
Mar-23	12	161,969	13,497	12	161,969	13,497
Apr-23	13	114,044	8,773	13	114,044	8,773
NOTE: The numbers in parentheses are negative numbers.						
NOTE: The data for October 2022 was adjusted by averaging the bill count and customer usage data for September and November 2022.						

Table 10

Secondary Method—Using the Average of that Month in the Dataset

Our secondary method was to calculate the average of all of that particular month's data in the dataset. As an example, consider October 2022. We took the average of October 2014 through October 2021 and included October 2023 in the average. The result of this adjustment method was 3,408 therms compared to 3,342 therms using the primary adjustment method. A comparison of how these two methods fit within the context of the immediate surrounding data is shown in Table 11 below.

Comparison of Staff' Primary Method and Secondary Method for Solving October 2022 Data Problems							
Topeka Large Volume Firm Class							
	Average	e of the 2015	5-2023*	Staff's Simple Interpolation			
	Customer	Customer	Average	Customer	omer Customer Aver		
	Count	Gas Usage	Uasge	Count	Gas Usage	Uasge	
September	9	22,501	2,572	12	29,548	2,462	
October	9	30,670	3,408	13	41,769	3,342	
November	10	56,288	5,848	13	53,990	4,153	
NOTE: September through November 2022 are excluded from the averaging.							

Table 11

Why the Primary Adjustment Method Is Preferred to the Secondary Adjustment Method

Using the primary adjustment method is preferred because it only uses surrounding data. In many commercial and industrial classes, especially the transportation classes, there are large swings in the data. By using the previous and following months customer bills and customer usage, most of the effect of these swings can be avoided. For example, a class that at the beginning of the estimation period has only 9 customers, but by the test year, it has 14 customers, could have different average customer usage characteristics in in the two different part of the estimation period, which would distort the secondary adjustment process.

Other Methods of Adjustment Used

We ran into several cases where there had been one customer in a class, and then for one period there was customer usage but zero customers in the class. In these cases, we assumed that there was always one customer in the class.

When we ran into cases where there were breakpoints in the regression analysis, if changes in the regression analysis did not eliminate the breakpoints, then we would shorten the period of estimation to exclude the breakpoints from the estimation data.

In some cases, the final month of the test year looked out of place. Table 6 above has three examples of this phenomenon. In these cases, we excluded the last month and tried to find a regression model that would work. However, when the final month data looked out of place, there were also other data problems that prevented successfully estimation of a weather normalization model.

EXHIBIT RHG-2

DOCKET NO. 25-BHCG-298-RTS

Staff's Weather Normalization Regression Analysis

Staff's Weather Normalization Regression Analysis

Introduction

Why Statistical Analysis Works for Weather Normalization

Linear regression analysis works as well as it does for weather normalizing gas utilities customer usage because of the close relationship between the movements of average customer usage and heating degree days (HDD). Below in Figure 1 is a comparison of Dodge City Residential average customer usage and current period HDDs and previous period HDDs [HDD(-1)].

Figure 1

The data is from July 2015 through July 2018. The reason a complete dataset of 10 years is not shown is because the seasonal cycles would fill the graph and result in the graph looking like three curves layered on top of each other. The weather variables do not match-up perfectly, but they look closely correlated. In fact, the weather variables explain 97.6% of the variation in the average usage variable.¹ It is the close correlation between Residential

 $R^{2} = \frac{Sum of Squares Explainaea by the Regression}{Total Summ of Squares of the Dependent Variable}$

¹ The 97.6% is the value of the adjusted R^2 . R^2 is the coefficient of determination. $p_2 = Sum \text{ of Squares Explainded by the Regression}$

The adjusted R² is adjusted for the number of independent variables: $R^2 \ge Adjusted R^2$.

average customer usage and weather that makes statistically estimating weather normalization successful. For large, well-behaved classes such as the Dodge City Residential Class, average customer usage and weather are tightly correlated. Unfortunately, this tight fit does not exist for all customer classes. As a result, a mechanical approach to weather normalization will run into problems at some point.

Outline of Staff's Approach

Preliminary Data Analysis

Our first step is always to look at the data. We begin with preliminary data investigation by graphing and looking at the average usage data for each class to check for outliers in the data. If the data is bad, then no statistical technique is going to save weather normalization.

Preliminary Statistic Analysis

For weather normalization, we use regression estimation. First, we run the Augmented Dickey-Fuller unit root test on average customer usage to see if it has a unit root. Then we run the simple equation below for each class and use the results to test for structural breaks in the estimation.

Eq 01 $y = a + WSF_1 * HDD + WSF_2 * HDD(-1) + \varepsilon^2$

In the equation, y represents average customer usage a is the intercept term, ε is an error term, HDD and HDD(-1)³ are the independent weather variables, and WSF₁ and WSF₂ are the weather sensitive parameters to be estimated.

Serial Correlation

The elimination of the outliers and the identification of breakpoints, in most cases, still leaves serial correlation in the error term, which means the time series data is not stationary.⁴ This could be because the data still has seasonal effects. We start by inserting lagged variables of average customer usage. If that does not work, then we move to using autoregressive moving average (ARMA) terms.

² In the irrigation equations, the CDD and perception variables are added and nearly always the HDD variables add nothing to the explanatory value of the equation and are eliminated.

³ A lagged variable (-1) is the previous month's value when looking at the current month. For example, if the month is October, September HDDs would be the lagged HDDs.

⁴ A stationary time series has mean, variance, and autocorrelation structure that is constant over time.

Structural Breakpoints

We continually check for structural breakpoints because if we change our regression equation, we can sometimes add breakpoints or eliminate breakpoints. No regression equation is finalized until it is checked for breakpoints. The exception is when there are ARMA terms in the equation. If an equation has ARMA terms, then most breakpoint tests will not work.

Staff's Philosophy for Significance, Rejecting Variables, and Equation Building

It has been my experience that in statistics and econometrics classes, teachers point out that the 5% significance level for rejecting the null hypothesis is an arbitrary, ad hoc criteria developed by Ronald Fisher in the 1920s. Fisher recognized that the 5% significance level was arbitrary and ad hoc, but needed some criteria, and so he used it. Fisher did not intend the 5% significance level to be treated as rule by other researchers.

We treat the 5% significance level as a guide. If a coefficient is insignificant, but eliminating it noticeably affects the results of the regression for the worse, then we reconsider including the variable, but only after further analysis, experimentation, and testing. The only rule that we follow is that the coefficient needs to be larger in absolute value than the standard deviation. If the coefficient fails this fundamental test, it is eliminated.

Preliminary Data Analysis

Looking at the average customer usage graph and testing for structural breaks in the data are designed to identify data problems that would make statistical estimation meaningless. The most important part of statistical estimation is the data. If the data has outliers or does not follow any pattern, then regression analysis will be worthless.

The Problem of Outliers

An Example of the Effect of an Outlier

An outlier is a data point in a dataset that lies beyond the rest of the data. Below in Figure 2, the data point for March 2013 is well above the rest of the dataset as the graph shows. The effect of such a data point on the results of a regression equation can be overwhelming. This example is taken from the 24-KGSG-610-RTS docket.

Exhibit RHG-2 Prepared by Robert H. Glass Docket No. 25-BHCG-298-RTS

Figure 3 below shows the effect of eliminating the outlier. Note the difference in the left axis values in Figure 2 and 3.

Figure 3

The Statistical Effect of Eliminating an Outlier

To show the effect of the outlier on the regression analysis, we estimated Eq 01 for the Wichita Large Transport K -Tier 1 Class with and without the outlier. The results are provided in Table 1 below.

The Effec	t of an Outlier	on Regressio	on Estimation	n
Dependent Variable: V	Vichita Large Ti	ransport K - T	ier 1	
Method: Least Square	s			
Sample: 2013M01 202	23M09			
Variable	Coefficient	Std. Error	t-Statistic	Probabilty
С	119.224	42.348	2.815	0.006
WICH_HDD	0.017	0.140	0.122	0.903
WICH_HDD(-1)	0.909	0.140	6.500	0.000
R-squared	0.509	Mean dep	endent var	454.45
Adjusted R-squared	0.501	S.D. dependent var		472.35
S.E. of regression	333.748	Akaike info criterion		14.48
Sum squared resid	14,034,860	Schwarz criterion		14.55
Log likelihood	(931)	Hannan-Quinn criter.		14.51
F-statistic	65	Durbin-Watson stat		1.01
Sample: 2013M02 20	23M09	_		
С	134.757	10.460	12.884	0.000
WICH_HDD	(0.077)	0.035	(2.217)	0.028
WICH_HDD(-1)	0.880	0.035	25.478	0.000
R-squared	0.930	Mean dependent var		422.89
Adjusted R-squared	0.929	S.D. dependent var		308.82
S.E. of regression	82.387	Akaike info criterion		11.68
Sum squared resid	848,446	Schwarz criterion		11.75
Log likelihood	(745)	Hannan-Q	uinn criter.	11.71
F-statistic	830	Durbin-Wa	atson stat	0.67

Та	bl	le	1
			_

The results show a large difference for the HDD variable's coefficient, including a sign change, and a small difference for the HDD(-1) variable coefficient. However, the starker differences are in the criteria results. For example, the adjusted R² increases from 50% to 93% by dropping the outlier from the estimation. The Standard Error of the Regression falls from 334 to 82. In addition, the Log Likelihood increases substantially, and the information indexes are superior with the omission of the outlier. The reason the outlier has such a dramatic effect is that ordinary least squares (OLS) method of estimation was used. With OLS estimation, each data point is squared, thus exacerbating the outlier effect.

Regression Analysis

Serial Correlation

What Serial Correlation is

After running the simple regression model (eq. 01) with the two HDD variables, there is usually still seasonality in the data that will result in serial correlation in the error term. In particular, we have found that at lags of six and twelve months, there was serial correlation. Intuitively, this just means that last February is a good place to start when estimating average customer usage this February. Or last October can help explain customer usage in April. If this type of serial correlation is not treated, it does not bias the coefficients, but it does bias the variance of the coefficients, which results in biasing test statistics like t-tests and F-tests or any other test which is dependent on the variance of individual coefficient estimations.⁵ With positive serial correlation, which is the usual case with seasonality, the coefficient variances are estimated as too small, resulting in the t-tests and F-tests or variance of the coefficients. Sometimes we have also found first order serial correlation in the error term. This just means that next period average customer usage is the best forecast using this period's average customer usage.

Q-Statistics: Test for Serial Correlation

We use the Q-statistics to test for serial correlation. In particular, graphs of the autocorrelation function (ACF) and the partial autocorrelation function (PCF) make it easy to identify where the serial correlation occurs. We usually find that either one month, two month, six month, or twelve month lags of average customer usage will mitigate the serial correlation. If lags of the average customer usage do not sufficiently mitigate serial correlation, then we will try autocorrection and moving average functions. Eviews has a nice

⁵ An unbiased estimator does not under or overestimate the parameter in the population. A consistent estimator converges in probability to the parameter value as more and more data are added to the estimation. Efficiency means having the smallest possible variance.

graphical presentation of the ACF and PCF functions that aid in choosing lags. Figure 4 below shows an example of the ACF and PCF functions. Almost any time series textbook will have a section on how to read the graph.

Date: 06/12/24 Tim Sample: 2015M12 2	e: 13:27 023M09					
Included observatior Autocorrelation	is: 94 Partial Correlation		AC	PAC	Q-Stat	Prob
Autocorrelation	Partial Correlation	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	AC 0.632 0.436 0.352 0.373 0.311 0.120 0.100 0.039 -0.141 -0.212 -0.224 -0.255 -0.267 -0.205 -0.267 -0.205 -0.169 -0.109 -0.057 -0.062	PAC 0.632 0.061 0.092 0.178 -0.020 -0.218 0.086 -0.110 -0.314 0.012 -0.009 0.024 -0.035 -0.118 0.065 0.018 0.058 0.002 -0.082	Q-Stat 38.698 57.321 69.623 83.603 93.387 94.874 95.909 96.068 98.170 103.01 108.46 111.02 116.36 123.71 131.87 136.74 140.10 141.51 141.90 142.38	Prob 0.000
		21 22 23 24	-0.065 -0.030 0.072 0.170	-0.032 0.019 0.100 0.101	142.90 143.01 143.67 147.41	0.000 0.000 0.000 0.000

Technical Description of the Q-Statistic

The Q-Test is a check to see if the autocorrelation coefficients are all 0 (jointly not significant) where the residual autocorrelation coefficients are $r(i) = corr(\hat{\epsilon}_t, \hat{\epsilon}_{t-i}), 1, ..., m$ where r(i) is the residual at time t. In other words, if r(1) = 0, r(2) = 0, ..., r(m) = 0, then there is no autocorrelation up to order m.

The test statistic is:

$$Q(m) = T(T+2)\sum_{i=1}^{m} \frac{r_i^2}{T-i} \sim Chi \, Squared(m)$$

The intuition is that if $\hat{\epsilon}_t s$ are autocorrelated, then the r(i)s should be "large" \Rightarrow Q(m) is "large." If Q(m) is larger than a "critical value"—Q(m) > Q_{CV}(m) \Rightarrow H₀: r(1) = 0, r(2) = 0, ..., r(m) = 0 is rejected. And therefore the $\hat{\epsilon}_t s$ are autocorrelated.

A second Q-Test can be used to check for heteroscedasticity. The Q-Test is the same as the Q-Test before except this time the r(i) is the squared residuals $r(i) = corr(\hat{\varepsilon}_t^2, \hat{\varepsilon}_{t-1}^2)$, 1, ..., m. If the r(1) = 0, r(2) = 0, ..., r(m) = 0 then there is no heteroscedasticity up to order m.

Using Lags of Average Customer Usage as a First Step to Mitigate Serial Correlation

There are two reasons for trying lagged average customer usage first. First, the lagged variable is more backward looking than the autocorrection and moving average functions which are better for forecasting. With weather normalization we are not forecasting, instead we are trying to estimate the impact of previous weather on previous customer usage. Second, the lagged variables are more intuitive than autocorrelation and moving average functions: (1) because the algebraic representation is simpler than for autocorrection and moving average functions, and (2) by using lags rather than autocorrelation and moving average functions, the estimation process remains least squares rather than maximum likelihood or some other more complicated process, and for example, Bai-Perron breakpoint tests only work with least squares estimation.

Algebraic Difference between Lags of the Dependent Variable and ARMA Terms

One of the common misconceptions is that adding a first order autoregressive term, AR(1), is about the same as using the first lag of the dependent variable. The problem comes in the fact that in most textbooks AR(1) is defined as

$$y_t = c + y_{t-1}.$$

But, when an equation follows an AR process, it is the error term that follows an AR process, not the dependent variable. So,

$$y_t = c + u_t$$
 and $u_t = \rho u_{t-1} + \varepsilon_t$

With some substitution,

$$y_t = c + \rho u_{t-1} + \varepsilon_t \text{ and } u_{t-1} = y_{t-1} - c$$
$$y_t = c + \rho(y_{t-1} - c) + \varepsilon_t$$
$$y_t = (1 - \rho)c + \rho(y_{t-1}) + \varepsilon_t$$

Now compare the above equation to just adding a lag of the dependent variable.

$$y_t = c + \rho(y_{t-1}) + \varepsilon_t$$

The coefficient on y_t , ρ is the same, but the constant becomes more complex with the AR(1) term.

Assuming an independent variable in the equation reveals the complexity of the difference between lagging the dependent variable and using an AR process. For an AR(1) process it is:

$$y_t = c + \beta x_t + u_t \text{ and } u_t = \rho u_{t-1} + \varepsilon_t$$
$$y_t = c + \beta x_t + \rho u_{t-1} + \varepsilon_t$$
$$y_t = c + \beta x_t + \rho (y_{t-1} - c - \beta x_{t-1}) + \varepsilon_t$$
$$y_t = (1 - \rho)c + \rho y_{t-1} + \beta x_t - \rho \beta x_{t-1} + \varepsilon_t$$

For a lag of the dependent variable the equation becomes:

$$y_t = c + \beta x_t + \rho(y_{t-1}) + \varepsilon_t$$

Unit Roots

A unit root creates a time series that is non-stationary: the time series' statistical properties change over time. There are three types of unit roots: unit roots that are random walks, unit roots with a drift but no trend, and unit roots with a drift and trend.⁶

A unit root can create serious problems for regression estimation. Granger and Newbold wrote a paper about the effects of unit roots on equation estimation titled "Spurious Regressions in Econometrics."⁷ Autocorrelation usually leads to an underestimation of the variance. Unit roots are an extreme case of autocorrelation. Granger and Newbolt state "a high value of R² should not … be regarded as evidence of a significant relationship between autocorrelated series."⁸

The simplest and easiest method of mitigating a unit root is to difference the variables,⁹ which eliminates the unit root. But because the WSFs also are used for the weather normalization

⁶ The random walk is a time series without a drift or trend, but the data fluctuates randomly around a zero mean. This type of time series is not predictable. The unit root with a drift has a non-zero mean that the data fluctuates around but the mean does not change over time which causes the time series to drift upward or downward. The unit root with a drift and a trend has data that tends to fluctuate around a non-zero mean, and the mean itself changes over time either upwards or downwards.

⁷ Granger, C. W. J.; Newbold, P. (1974). "Spurious regressions in econometrics". Journal of Econometrics. 2 (2): 111–120

⁸ lbid. p. 114.

⁹ The first difference of a variable is: $\Delta y_t = y_t - y_{t-1}$. Multiple differencing is possible if needed.

adjustment of the gas cost adjustment, differencing is not a feasible adjustment. This leaves one exception to the problems created by unit roots.

Cointegration

The one exception is if the different time series variables are cointegrated. Cointegration is when a linear combination of two or more non-stationary time series has a long-run equilibrium. In other words, the left-hand variable has a unit root, the right-hand independent variables have a unit roots, but the linear combination among the variables creates a long run equilibrium resulting in the error term not having a unit root. In the case of cointegration, a shock to the equilibrium is mitigated by a mean reverting process returning the variables to the long-run equilibrium.¹⁰ If there is no cointegration, then a shock to system means a permanent change to the time series path of the system. Something common in customer count and customer usage time series.

The implications of cointegration for weather normalization are nice. As already noted, average customer usage has a unit root for most customer classes and weather stations, and HDD, and HDD(-1) also have a unit root for all weather stations. Then if average customer usage and the HDD and HDD(-1) are cointegrated, then estimation in levels is appropriate rather than using differencing. To put it simply, when average customer usage, HDD, and HDD(-1) are cointegrated, standard weather normalization procedures are statistically appropriate.

Breakpoints in the Regression Estimation of Coefficients

What a Structural Break Is

A structural break is an abrupt change in regression parameters that results in the regression model failing to adequately describe the situation either in the period before or after the structural break: structural breaks are both data and model based, not just data based.

Why a Structural Break Creates Estimation Problems

Structural stability—the assumption that regression coefficients do not change over time—is vital to applied regression analysis. However, economic and political events, or just the way a variable is measured, can create structural breaks.¹¹ For example, in March 1951, after years of conflict, the Federal Reserve and U.S. Treasury ended the agreement

¹⁰ A cointegrated system can be estimated and then an error correction model can be used to estimate the short-run and long-run mean reverting processes.

¹¹ Ahmed, Mumtaz; Haider, Gulfam; Zaman, Asad (October 2016). "Detecting structural change with heteroskedasticity". Communications in Statistics – Theory and Methods. 46 (21): 10446–10455.

that the Federal Reserve would keep interest rates artificially low to reduce the cost of paying for World War II. 12

Structural breaks in billing data can be caused by changes in the requirements for a class, or a sudden increase or reduction in a class due to a policy change, or the loss of a couple of customers in a small class. As an example of a structural break, the Topeka Small Commercial Class has a structural break in the period November/December 2022, which is illustrated in Figure 5 below.

The mean of the average usage variable increased from 87.9 in the first period to 110.0 in the second period—an increase of slightly more than 25%. Over the same periods, the standard

¹² <u>https://www.federalreservehistory.org/essays/treasury-fed-accord</u>. Another example is the "Volcker shock" of October 1979 when Paul Volcker announced that the Federal Reserve would restrict the growth in the money to control inflation. https://www.federalreservehistory.org/essays/anti-inflation-measures

deviation increased almost 20%. Table 2 below illustrates the effect of the structural break on coefficient values and standard errors. It also includes the mean and standard deviation of average usage for both periods.¹³

Example of a Breakpoint Topeka Small Commercial Class				
The Breakpoint isApril 2015 toDecember 2022November/DecemberNovember 2022September 202022(a)(b)				
HDD		·		
Coefficient	0.04524	0.06310		
Standard Error	0.00661	0.01201		
HDD(-1)				
Coefficient	0.21443	0.23515		
Standard Error	0.00712	0.01392		
Averge Usage				
Mean	87.9	110.0		
Standard Deviation	83.4	99.2		

Та	b	le	2
			_

Eliminating the Problem of Structural Breaks

We eliminate the problem of estimating regression equations with structural breaks by only estimating the regression equation with data after the last structural break. The purpose of weather normalization is to adjust customer usage so that it reflects average weather. If there is a structural break, then the model parameters are going to be significantly different during the two periods. Since the later period is closer to the present, we use the estimate from the later period.

¹³ The data for October 2022 was adjusted for the dataset used for the final estimation (see Exhibit RHG-1 for an explanation.) Staff ran several different regression models on the two different dataset—one dataset with October 2022 adjusted and a second dataset with October 2022 not adjusted. In both cases, a breakpoint was identified between June 2022 and July 2023, which is the confidence 90% confidence interval. With the unadjusted dataset, the break point was identified as July 2022 while with the adjusted dataset the breakpoint was December 2022.

STATE OF KANSAS)) ss.) ss.COUNTY OF SHAWNEE)

VERIFICATION

Bob Glass, being duly sworn upon his oath deposes and states that he is Chief of Economic Policy and Planning for the Utilities Division of the Kansas Corporation Commission of the State of Kansas, that he has read and is familiar with the foregoing *Direct Testimony*, and attests that the statements contained therein are true and correct to the best of his knowledge, information and belief.

Bob Glass Chief of Economic Policy and Planning State Corporation Commission of the State of Kansas

Subscribed and sworn to before me this 20____ day of April, 2025.

Notary Public

My Appointment Expires: 4/28/29

ARY PUBLIC - State of Kansas

CERTIFICATE OF SERVICE

25-BHCG-298-RTS

I, the undersigned, certify that a true and correct copy of the above and foregoing Direct Testimony was served via electronic service this 9th day of May, 2025, to the following:

JAMES G. FLAHERTY, ATTORNEY ANDERSON & BYRD, L.L.P. 216 S HICKORY PO BOX 17 OTTAWA, KS 66067-0017 jflaherty@andersonbyrd.com

NICK SMITH, MANAGER - REGULATORY & FINANCE BLACK HILLS/KANSAS GAS UTILITY COMPANY LLC D/B/A Black Hills Energy 601 NORTH IOWA STREET LAWRENCE, KS 66044 nick.smith@blackhillscorp.com

ROB DANIEL, DIRECTOR OF REGULATORY BLACK HILLS/KANSAS GAS UTILITY COMPANY, LLC D/B/A BLACK HILLS ENERGY 2287 COLLEGE ROAD COUNCIL BLUFFS, IA 51503 rob.daniel@blackhillscorp.com

JOSEPH R. ASTRAB, CONSUMER COUNSEL CITIZENS' UTILITY RATEPAYER BOARD 1500 SW ARROWHEAD RD TOPEKA, KS 66604 joseph.astrab@ks.gov

SHONDA RABB CITIZENS' UTILITY RATEPAYER BOARD 1500 SW ARROWHEAD RD TOPEKA, KS 66604 shonda.rabb@ks.gov JEFF AUSTIN AUSTIN LAW P.A. 7111 W. 151st ST. SUITE 315 OVERLAND PARK, KS 66223 jeff@austinlawpa.com

JEFFREY DANGEAU, ASSOCIATE GENERAL COUNSEL BLACK HILLS/KANSAS GAS UTILITY COMPANY, LLC D/B/A BLACK HILLS ENERGY 655 EAST MILLSAP DRIVE, STE. 104 PO BOX 13288 FAYETTEVILLE, AR 72703-1002 jeff.dangeau@blackhillscorp.com

DOUGLAS LAW, ASSOCIATE GENERAL COUNSEL BLACK HILLS/KANSAS GAS UTILITY COMPANY, LLC D/B/A BLACK HILLS ENERGY 2287 COLLEGE ROAD COUNCIL BLUFFS, IA 51503 douglas.law@blackhillscorp.com

TODD E. LOVE, ATTORNEY CITIZENS' UTILITY RATEPAYER BOARD 1500 SW ARROWHEAD RD TOPEKA, KS 66604 todd.love@ks.gov

DELLA SMITH CITIZENS' UTILITY RATEPAYER BOARD 1500 SW ARROWHEAD RD TOPEKA, KS 66604 della.smith@ks.gov

CERTIFICATE OF SERVICE

25-BHCG-298-RTS

ALEX GOLDBERG, ATTORNEY EVERSHEDS SUTHERLAND (US) LLP 1196 S MONROE STREET DENVER, CO 80210 alexgoldberg@eversheds-sutherland.com

JAMES P ZAKOURA, ATTORNEY FOULSTON SIEFKIN LLP 7500 COLLEGE BOULEVARD, STE 1400 OVERLAND PARK, KS 66201-4041 jzakoura@foulston.com

MONTGOMERY ESCUE, CONSULTANT FREEDOM PIPELINE, LLC 3054 KINGFISHER POINT CHULUOTA, FL 32766 montgomery@escue.com

AARON BAILEY, ASSISTANT GENERAL COUNSEL KANSAS CORPORATION COMMISSION 1500 SW ARROWHEAD RD TOPEKA, KS 66604 aaron.bailey@ks.gov

PAUL MAHLBERG, GENERAL MANAGER KANSAS MUNICIPAL ENERGY AGENCY 6300 W 95TH ST OVERLAND PARK, KS 66212-1431 mahlberg@kmea.com

DARREN PRINCE, MANAGER, REGULATORY & RATES KANSAS MUNICIPAL ENERGY AGENCY 6300 W 95TH ST OVERLAND PARK, KS 66212-1431 prince@kmea.com MOLLY E MORGAN, ATTORNEY FOULSTON SIEFKIN LLP 1551 N. Waterfront Parkway Suite 100 Wichita, KS 67206 mmorgan@foulston.com

DAVID N DITTEMORE FREEDOM PIPELINE, LLC 609 REGENT PARK DRIVE MT. JULIET, TN 37122-6391 d.dittemore28@gmail.com

KIRK HEGER FREEDOM PIPELINE, LLC 1901 UNIVERSITY DRIVE LAWRENCE, KS 66044 kirkheger@gmail.com

PATRICK HURLEY, CHIEF LITIGATION COUNSEL KANSAS CORPORATION COMMISSION 1500 SW ARROWHEAD RD TOPEKA, KS 66604 patrick.hurley@ks.gov

TERRI J PEMBERTON, GENERAL COUNSEL KANSAS MUNICIPAL ENERGY AGENCY 6300 W 95TH ST OVERLAND PARK, KS 66212-1431 pemberton@kmea.com

DIXIE RIEDEL, DIRECTOR OF NATURAL GAS, KMGA KANSAS MUNICIPAL ENERGY AGENCY 6300 W 95TH ST OVERLAND PARK, KS 66212-1431 riedel@kmea.com
CERTIFICATE OF SERVICE

25-BHCG-298-RTS

GLENDA CAFER, MORRIS LAING LAW FIRM MORRIS LAING EVANS BROCK & KENNEDY CHTD 800 SW JACKSON STE 1310 TOPEKA, KS 66612-1216 gcafer@morrislaing.com

WILL B. WOHLFORD, ATTORNEY MORRIS LAING EVANS BROCK & KENNEDY CHTD 300 N MEAD STE 200 WICHITA, KS 67202-2745 wwohlford@morrislaing.com

FRANK A. CARO, JR., ATTORNEY POLSINELLI PC 900 W 48TH PLACE STE 900 KANSAS CITY, MO 64112 fcaro@polsinelli.com

RICHARD L. HANSON RICHARD L. HANSON 16171 ROAD I LIBERAL, KS 67901 rlhanson@wbsnet.org

LAURA PFLUMM CEREZO, ATTORNEY SEABOARD ENERGY KANSAS, LLC D/B/A SEABOARD FOODS LLC 9000 W 67TH STREET STE 200 MERRIAM, KS 66202 laura.cerezo@seabordcorp.com

JENNIFER CHARNO NELSON, ATTORNEY SEABOARD ENERGY KANSAS, LLC D/B/A SEABOARD FOODS LLC 9000 W 67TH STREET STE 200 MERRIAM, KS 66202 jennifer.nelson@seaboardfoods.com LUKE A. SOBBA, ATTORNEY MORRIS LAING EVANS BROCK & KENNEDY CHTD 800 SW JACKSON STE 1310 TOPEKA, KS 66612-1216 Isobba@morrislaing.com

PHOENIX Z. ANSHUTZ, ATTORNEY PENNER LOWE LAW GROUP, LLC 245 N WACO STREET, STE 125 WICHITA, KS 67202 panshutz@pennerlowe.com

JARED R. JEVONS, ATTORNEY POLSINELLI PC 900 W 48TH PLACE STE 900 KANSAS CITY, MO 64112 jjevons@polsinelli.com

LAURA PFLUMM CEREZO, ATTORNEY SEABOARD ENERGY KANSAS, LLC D/B/A SEABOARD CORPORATION 9000 W 67TH STREET STE 200 MERRIAM, KS 66202 laura.cerezo@seabordcorp.com

JENNIFER CHARNO NELSON, ATTORNEY SEABOARD ENERGY KANSAS, LLC D/B/A SEABOARD CORPORATION 9000 W 67TH STREET STE 200 MERRIAM, KS 66202 jennifer.nelson@seaboardfoods.com

STACY WILLIAMS, SVP, GENERAL COUNSEL SYMMETRY ENERGY, LLC 1111 Louisiana St. Houston, TX 77002 stacy.williams@symmetryenergy.com

CERTIFICATE OF SERVICE

25-BHCG-298-RTS

DON KRATTENMAKER, VICE PRESIDENT WOODRIVER ENERGY, LLC 633 17th STREET, STE. 1410 DENVER, CO 80202 don.krattenmaker@woodriverenergy.com

Ann Murphy

Ann Murphy